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Starting from classical lattice systems in d>/2 dimensions with a regular zero- 
temperature phase diagram, involving a finite number of periodic ground states, 
we prove that adding a small quantum perturbation and/or increasing the 
temperature produce only smooth deformations of their phase diagrams. The 
quantum perturbations can involve bosons or fermions and can be of infinite 
range but decaying exponentially fast with the size of the bonds. For fermions, 
the interactions must be given by monomials of even degree in creation and 
annihilation operators. Our methods can be applied to some anyonic systems as 
well. Our analysis is based on an extension of Pirogov-Sinai theory to contour 
expansions in d +  1 dimensions obtained by iteration of the Duhamel formula. 
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1. I N T R O D U C T I O N  

The s tudy of  phase  d i ag rams  of  q u a n t u m  lat t ice systems is a much  less 
developed subject  than  its classical coun te rpar t .  There  has been extensive 
numer ica l  work  on q u a n t u m  phase  d i ag rams  at  zero tempera ture ,  but  
r igorous  studies, which are often unexpec ted ly  difficult and  rich in surprises,  
have been very few in number .  A sys temat ic  exp lo ra t ion  of  the different 
types of  g round  states has  been carr ied  out  mos t ly  for one-d imens iona l  
s y s t e m s - - c h a i n s - - ( s e e ,  for instance,  refs. 11, 19, and  1 and references therein  
for studies of  chains,  and  ref. 19 for more  general  cons idera t ions) .  

O u r  present  unde r s t and ing  of  phase  d i ag rams  at low, but  nonze ro  
t empera tu re  is very l imited as well, a l though  m a n y  i m p o r t a n t  quan tum-  
spin lat t ice systems have been r igorous ly  s tudied at  low t empera tu re s  (see, 
for instance,  refs. 30, 14, 10, 13, 34, 35, 17, 18, 21, 23, 22, 3, and  2). These 
studies provide  useful i l lus t ra t ions  of  some of  the p h e n o m e n a  involved,  but  
by  and large they focus on ext rac t ing  deta i led in format ion  for special  
models ,  ra ther  than  on deve loping  a general  formal i sm of  wider  appl ica-  
bility. As an except ion we ment ion  Section 4 of  ref. 19. In this paper ,  we 
take  the a t t i tude  of  this last  reference: We present  some general  b l ack-box-  
type results which, a l though  typica l ly  far from op t ima l  for each specific 
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model, allow us to understand the broad features of some regions in the 
phase diagrams of quantum lattice systems dominated by a classical inter- 
action. 

Usually, the study of low-temperature phase diagrams involves a two- 
step process: First, the zero-temperature phase diagram is drawn, and 
second, one analyzes which of the zero-temperature phases survive at non- 
zero temperatures. For classical systems, there is a general theory to handle 
the second part of this process, namely Pirogov-Sinai theory, t2s,29,33,37"41 

The bottom line of this theory can be summarized as follows: If the zero- 
temperature phase diagram is a regular phase diagram (in the sense of 
satisfying the Gibbs phase rule) involving a f ini te  number of periodic 
ground states, and if in addition the excitations of these ground states have 
an energy proportional to the size of their boundaries (Peierls condition), 
then the phase diagrams for low enough temperatures are only small 
deformations of the zero-temperature phase diagrams. In other words, the 
theory says that for systems with finitely degenerate ground states and 
obeying the Peierls condition, the entropy contribution to the free energy, 
present at nonzero temperatures, is only a small correction to the internal 
energy at low temperatures. 

In this paper we extend this theory to systems with small quantum 
perturbations, and we conclude that the addition of these perturbations 
only leads to small deformations of the phase diagram if the temperature 
is low (in particular equal to zero). It is somehow surprising that, except 
for a pioneer announcement c27~ which was never followed by full proofs, 
this natural extension of Pirogov-Sinai theory has never been considered 
previously. 5 One may argue that this is because the extension (apparently) 
refers to the least interesting regions of a quantum phase diagram, namely 
those where the quantum part does not trigger any new effect. This is, 
however, a poor  reason on two accounts: First, a "no-go" result is needed 
and useful, because it allows people hunting for quantum effects to rule out 
large regions of the phase diagram, saving effort and misunderstandings. 
Second, and more importantly, some quantum effects can, in fact, be 
studied by using our results. Indeed, we shall show in a subsequent paper (s~ 
how, by combining the present theory with a perturbation scheme, one can 
analyze degeneracy-breaking effects induced by quantum perturbations and 
the associated phase transitions. 

-~ We have recently been informed by Borgs et al. ~5) that they have also constructed an exten- 
sion of Pirogov-Sinai theory to quantum spin systems of the type analyzed in the present 
paper. Their approach is closely related to ours, relying on a Duhamel expansion rather than 
a Trotter formula, but they introduce a "blocking" in the "time direction" to map the 
problem into a (d+ l)-dimensional discrete lattice. Their results are similar to ours. 
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A noteworthy difference between our approach and many of the 
previous ones (e.g., refs. 30, 14, and 17) is that, instead of using the Trotter 
formula, we resort to an imaginary-time Dyson expansion based on an 
iteration of Duhamel's formula. The resulting expansion roughly corre- 
sponds to performing part of the limit involved in the Trotter  formula, so 
a sum over a large number of small subintervals is replaced by an integral. 
Thus, we work in subregions of 7/dX [0, fl]; the last coordinate-- the "time 
direction"--being a continuous one (with periodic boundary conditions), 
and our contours are piecewise-cylindrical surfaces whose "time" sections 
are ordinary Pirogov-Sinai classical contours. We think that this approach 
has several advantages. On one hand, contour considerations are based on 
the surfaces naturally associated with the expansion, without the additional 
projection introduced in approaches based on the Trotter  formula. This 
allows for simpler and clearer geometrical and combinatorial arguments, a 
fact also exploited, for instance, in ref. 1. On the other hand, the effects of 
quantum perturbations have a nice visualization: they change the sections 
of contours. If the system were purely classical, the contours would be 
straight cylinders of constant section; the quantum terms produce deforma- 
tions or the appearance of "vacuum fluctuations" in the form of contours 
that appear and/or disappear at intermediate values of the "time" coordinate. 

These observations permit us to make rigorous the usual heuristics 
about quantum perturbations having an "entropy effect" comparable to 
temperature. Indeed, all our bounds are in terms of the maximum of the 
quantum-coupling parameter 2 and a temperature parameter of the form 
e x p ( - f l J )  for some coupling J >  O. In particular, by letting fl ~ ~ our for- 
malism yields information about ground states: the "classical-like" contours 
extending all the way along the interval [O, fl] disappear, and all that 
remain are vacuum fluctuations in a "sea of spins" configured as in a classi- 
cal ground state. The fact that these expected features are exhibited in such 
a simple and immediate way is, we believe, a nice feature of our approach. 

For  the convenience of the reader we summarize the hypotheses and 
results in the following section, which can be read as a "recipe" section. 
Readers interested in the method itself can continue with the proofs and 
technicalities of the remaining sections. 

2. HYPOTHESES AND RESULTS 

2.1. A Formalism for Quantum Lattice Systems 

We consider particles with a finite number N of internal degrees of 
freedom on a d-dimensional lattice 7/d. The Hilbert space associated with 
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each site of the lattice is isomorphic to C 'v. The system is governed by a 
Hamiltonian of the form 

H = H d + V  (2.1) 

where H ~ is interpreted as the "classical part" and V as the "quantum per- 
turbation." The former consists of finite-range interactions, and is assumed 
to have a finite number of periodic ground states. The interactions con- 
stituting V can be of infinite range, provided their strengths decay exponen- 
tially with the size of their supports. To make these assumptions precise, we 
need some standard definitions. 

A quantum lattice model can be interpreted either as a sphl system or 
as a lattice gas. In a quantum spin system, there is a particle at each site 
of the lattice having a finite number of internal degrees of freedom. In 
describing such a system there is no need to refer to the statistics of the 
particles. In contrast, the particles in a lattice gas are allowed to hop from 
site to site. Hence their statistics plays an important role, and it is 
necessary to introduce Fock spaces to describe them. The mathematical 
framework required to describe these systems has been introduced in refs. 
5, 15, and 32. We summarize the essential features below. 

Quantum Spin Systems. For a quantum spin system the Hilbert 
space ~ t  associated with a finite subset A of the lattice is given by the 
tensor product 

JF 3 := @ ~,. (2.2) 
- x ' ~ A  

where each Jr.,. is isomorphic to C u (an infinite tensor product of Hilbert 
spaces is intentionally avoided, since it is not uniquely defined and is 
complicated to deal with; infinite-volume limits are considered only at the 
level of observable algebras and states). 

Bases of ~ can be put in correspondence with configurations on A in 
the following way: We choose an orthonormal basis 

{e~}~z with I : =  { 1,..., N} (2.3) 

in ~,.. Le t /2  A be the set of configurations {coA} in A, defined as the set of 
all assignments Ia.,.}.,.~A of an element ax~I  to each x. If X c A ,  then o) x 
denotes the restriction of the configuration co A to the subset X. For each 
configuration o)j, = {a,-}x~A eOA, let eo,,, be the vector defined as 

e,,,,, := @ e-" (2.4) 
o- x 

x ~ A  

The set of vectors { e,o,,} ,o,, ~ a,, is an orthonormal basis of ~ .  
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A state of a quantum lattice system is defined as a positive linear func- 
tional on a suitable C*-algebra. To construct the latter, we start with the 
algebra ~r of all bounded operators (matrices) acting on ~ with the 
usual operator norm and with Hermitian conjugation as the .-involution. 
The algebras SeA can be considered to be partially nested, i.e., 

~r c ,~r if A I c A z  (2.5) 

by identifying each operator A~ edA, with the operator A t | 1A:\A ~ e~ 'm,  
where 1 denotes the identity operator. Moreover, the algebras slA are local, 
i.e., if A ~ e ~'m and A2 e SEA_, and A~ n A_, = ~ ,  then 

A 1 A , = A , _ A I  (2.6) 

The norm closure of [J A ." Z" ~r defines an algebra which we denote by sr 
It is the quasilocal C*-algebra of observables associated with the infinite 
lattice y_d. All local algebras dA are subalgebras of~r 

The group Tz,~ of space translations acts as a . -automorphism group 
{r~:aeT/a} on d ,  with 

~'A +. = r .~r A (2.7) 

for A c ~_d. (The definition of r,, is obvious.) 
An &teraction of a quantum spin system is a function �9 from finite, 

nonempty subsets B of Z a to self-adjoint observables ~ B e  riB. We shall 
assume that the interactions are translation invariant, i.e., 

r , ,qsn=~8+, ,  foreach a 6 Z  a, B c Z  a (2.8) 

An interaction will be called classical if we can choose a basis {e~}~,~ in 
~,. such that, for every finite A c y_d, the matrices ~B, B c A, are diagonal 
in the basis { e~..,} o,., ~ a.4, defined through (2.4). In this case the interactions 
are uniquely defined by the numbers 

~bB(o)) := <eo,,I ~8  le,o,) 

= (eo,.,I ~n  le,o.,), V A = B  (2.9) 

Q u a n t u m  Lattice Gases .  In order to describe the itinerant par- 
ticles of a quantum lattice gas, one starts with the one-particle Hilbert 
space 

~ ( l )  := 12(za) | C ~ (2.10) 
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It represents a single particle which has N internal degrees of freedom and 
is confined to a lattice Z a. A basis of this space can be obtained from the 
bases {e~,.}~,,~ of ~.,. introduced above [Eq. (2.3)]. We shall also use e" �9 t7 x 

to denote the vector in jgll)  which has all other summands equal to zero. 
To incorporate the statistics of the particles, we construct Fock spaces 

o~p(,,Xg{I~)=P ~ (,,~r (2.11) 
n~>O 

where 

( y g ,  ~),, = yCr174174 ... | jr (2.12) 

denotes the n-fold tensor product of ~,~tl~ with itself, ( ~ ( p ( l ) ) O  : = C ,  and P 
is the orthogonal projection onto the subspace with the right symmetry 
properties. We shall consider bosons and fermions. 

(i) For bosons, P is the projection onto the symmetric subspace, 
defined on each (~(fr by 

1 
PBose(e~l | ... | e~") = n-! ~ e""',,=, | .-- @ e,~=,, ...... (2.13) 

rr 

where e~i ~ ~ l  ,~, for all i, and n ranges over all permutations of the indices 
(1 ..... n). 

(ii) For fermions, P is the projection onto the antisymmetric sub- 
space 

PFem~i(e~ ~, |  | = 1  L sgn(n) e~ ~, @.-- @e ...... 
11. n a~n 

(2.14) 

where sgn(n) is + 1 if the permutation n is even and - I  if it is odd. The 
RHS of (2.14) vanishes if any vector e~i appears more than once in the ten- 
sor product. This implies that it is impossible to create two fermions in the 
same state, in accordance with the Pauli exclusion principle. 

Identical cdnstructions can be made for finite volumes, i.e., when ~ t ~  
is replaced by 

~ 1 ~  :=12(A) |  N 

~- @ ~(~. (2.15) 
x E A  
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for finite A = Z a. The fermion Fock space for a finite volume A is given by 

' ~ / '  / :/r = P F e r m i  O (-XF(,~I) " (2.16) F e r m i  ~, ~ / I  ! 

n>~0 

It follows from the Pauli principle that the direct sum in (2.16) terminates 
at n = N  Ihl. 

The formulas (2.13) and (2.14) can be used to define some bases in the 
Fock spaces. One must take into account the fact that different vectors of 
(,r ", namely those which differ only in a permutation of the factors e~i, 
are mapped by the projection operator P onto the same vector of the Fock 
space (up to a sign). 

To avoid ambiguities, we choose a total ordering of the sites in 7] a. 
For  future convenience, we choose the spiral order, depicted in Fig. 1 for 
d = 2 .  We shall say that ( x l , a , )  is earlier than (x2, a2)--and write 
(xt ,  crl) ~ (x2, a2)-- i f  xl ~ x2 and, for Xl = Xz, al ~< a2. The spiral order 
has the convenient property that 

the set of sites earlier than those in a given, finite set B is 
also a finite set B I<l (2.17) 

This property will be useful in defining states corresponding to "classical" 
boundary conditions. [See discussion following (2.46).-I 

An orthonormal basis of f i e ( i f  (1~) is given by the vectors 

�9 -'r -YI -X'k -X'k Inxlcrl "''llXkak ) .= (e~, |  . . . . . . . . .  | 1 7 4  |174 | eak)_~< (2.18) 

nxl al times n.~l,.a,~, times 

where " ( . . . )<"  indicates that the braced factors must be ordered such that 
each subscript (xia~) is earlier than the ones to its right. The vectors (2.18) 
involve infinitely many occupation numbers n,.,,, but only finitely many, 
namely the indicated ones, are nonzero. By restricting the sites x~ to those 
in a finite region A ~ Z  a, one obtains a basis of ~p (~ '~ ) )  in a similar 
manner. For  fermions, each n.,.,~ is either 0 or 1. 

11 

7 

Fig. 1. 

5 4 3 

6 1 2 
(o,o) 

Spiral order in 7/2 . 
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Having introduced the Fock spaces appropriate for the description of 
bosons and fermions, we proceed to define suitable C*-algebras of observ- 
ables. The C*-algebras are generated by the creation and annihilation 
operators on Fock space obeying the canonical anticommutation relations 
(CAR) for fermions and the Weyl form of the canonical commutation 
relations (CCR) for bosons. 

The annihilation and creation operators on ffp(W(')) are defined as 

and 

with 

cx~ : = P a x . P  (2.19) 

c *  := P a * P  (2.20) 

a.,.~(e~l | . - .  |  x//n (e~, e~',) e"'~;_~(~ - - �9 | (2.21) 

a*  Ca-"' | | e~,,,) :=  v ~ +  1 -" -", ..... _~,, . . .  e~,| | . . .  |  (2.22) 

X X I .\" " where (e~,e~,) denotes the scalar product of the vectors e~ and e~'. 
Furthermore, 

a.,.,, IO) :=0 (2.23) 

and 

where 

-" (2.24) ax* I0> :=e~, 

IO) : = ( 1 ,  O, 0 , . . . )~  (~  (ovt~ " (2.25) 
n > / 0  

denotes the vacuum, i.e., the zero-particle state. 
For bosons, the operators defined through Eqs. (2.19) and (2.20) 

satisfy the canonical commutation relations (CCR): 

[ - C x l o - i ~  Cx.~o-.~ ] - -  C * C $ : _ .  - [ . , . : , ,  .,..,~,.] 0 

�9 Xl eX'] l rc.x.,O.l , cA.2o.21 ~--- (e~,, g_,, = _ 

(2.26) 

where 1 is the identity operator. For fermions, the corresponding operators 
satisfy the canonical anticommutation relations (CAR): 

{ c , . : , ,  = = 0  

* X2 __  { c.,.,,,,, c.,..,,,,} = (e;',, e(,.,) - I 
(2.27) 

It follows from the CAR that Ilc.,.A : tlc.,-~ll = 1. 



464 Datta et  al. 

The basis vectors Inx, a," "" n,wk) defined by Eq. (2.18) can be alternatively 
expressed in terms of the action of the creation operators on the vacuum, 

1 ( ( c *  ~n"l'q 1,~* Vt~k,,k ~ 
I n x , ~  - , .  ,2 , . , .~ , .> - -  k , , - . , , ~ , ,  " " " ~'-.,'k~,.' , <  I 0 ) ( 2 . 2 8 )  (I-Ii=l n.,-,~, ! ) 1/2 

The labeling is consistent with the fact that these vectors are simultaneous 
eigenvectors of the number operators 

n,.a := e*r (2.29) 

with the eigenvalues n.,.~ taking values 0 or 1 for fermions, and 0 or any 
natural number for bosons. More generally 

C* ]n,_l~l...nx,~k ) = i,,< e (n.,w, + 1)1/2 ]n.,.,a, --- n~.,~,+ 1 .. nxk~k) (2.30) .x'i~ri 

and similarly 

e,,w~ [n.,.,~, . . .  n.,.k~k) = ei~'~(n,.,~) 1p- [nx,~,~...n.,w~-- 1---n.,.,ak) (2.31) 

where 0c~ is a phase which depends on the n,~, with (xj, trj) strictly earlier 
than ( x i ,  oi): 

Let ~A be the 

0c< = 0  

~ <  = O, ~z 

,-algebra generated 

for bosons (2.32) 

for fermions (2.33) 

by the identity and the fermionic 
annihilation operators e.,.,, with x ~ A. It is referred to as the field algebra 
and is larger than the algebra of observables. The algebra ~'~, of local 
observables is the subalgebra of ~,~ consisting of all those operators which 
can be expressed as sums of monomials of even degree in the creation and 
annihilation operators associated with the lattice sites x ~ A. 6 For AlE ~A, 
and A 2 ~ d,12 

[ A 1 , A 2 ]  = 0  if AIc'~Az=fZJ (2.34) 

6 It is often reasonable to demand that observables are gauge invariant. A gauge transforma- 
tion % is defined by its action on the annihilation operators 

The algebra -~/,r of local observables could also be defined as the subalgebra of ~,~ consisting 
of all those elements which are invariant under the above transformation, i.e., 

A ~ / A  if A ~ , t  and ~ ( A ) = A  

Consequently a gauge-invariant observable is given by a sum of terms each having an equal 
number of creation and annihilation operators. 
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and hence the algebras dA are local. For bosons the creation and annihila- 
tion operators are not bounded. This is because there is no bound on the 
number of particles in the same one-particle state. The technical difficulties 
posed by this unboundedness can be avoided by considering bounded func- 
tions of these operators. One such choice yields the Weyl operators, which 
are defined as 

W,.,(a, b) =exp(&qb,.~+ibI1,.,), a, be R (2.35) 

where 

c.,., + c * ,  
and ~.,., v/~ (2.36) 

C x a  - -  Cx* a 
(2.37) 

H.,.~ - x//2 i 

The operators c~., and * . c,.~ are the bosonic annihilation and creation 
operators satisfying the CCR, (2.26). The Weyl operators satisfy the com- 
mutation relations 

W,.~(a, b) W,.,r b') 

=exp(i(ab'-a'b) 6,..,.,6r W,.,r b') W,.~(a, b) (2.38) 

which are called the Weyl form of the CCR. A quasilocal C*-algebra 
suitable for the description of bosons can be generated from these Weyl 
operators. 

In both the fermionic and bosonic cases the local algebras are nested 
with respect to inclusions of the localization regions, i.e., 

~r t _~ ~'A_, if AI~_A2 (2,39) 

and the quasilocal algebra of local observables is the norm closure of 
U A .- z~, dA, in complete analogy with quantum spin systems. Furthermore, 
let ~ be the qhasilocal C*-algebra defined as 

. n o r m  

& =  U ~,, (2.40) 
.4 2 ' Z  v 

where ~,, is the .-algebra generated by the identity and annihilation 
operators for fermions, and by the Weyl operators for bosons. 

822/84/3-4-10 
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As in a quantum spin system, an interaction in a quantum lattice gas 
is given by self-adjoint operators ~B ~ ~r for finite subsets B of the lattice. 
Note that it is implicitly assumed here that the ~B are bounded operators. 
This imposes severe restrictions on the allowed interactions in a bosonic 
lattice gas. For  fermions, the operators tP 8 are given by sums of monomials 
of even degree in creation and annihilation operators. We write this 
symbolically as 

qsB = ~ ~_B (2.41) 
B 

where each ~ n  is an even monomial and Z n denotes the sum over all such 
monomials (with support in B) comprising the operator ~B. In our 
formulation of the low-temperature expansion, it is necessary to express the 
fermionic interactions in terms of their constituent monomials, in order to 
arrive at a precise definition of quantum contours (see Section 3.3). In 
order to have a unified treatment for bosons and fermions, we shall denote 
all quantum interactions in the sequel by qsq, with the understanding that, 
for fermions, ~ is an even monomial (as mentioned above), whereas for 
bosons q~q = ~ .  Moreover, the notations 

_B~0; _BnA:~0 (2.42) 

will be used to denote that the set B corresponding to the monomials ~q  
(for fermions) and to r (for bosons) satisfies the conditions (2.42). For  
simplicity we shall assume that the interactions are translation invariant. 
However, our formalism can be easily extended to periodic interactions. 

If an operator q5 n is diagonal in the basis formed by the vectors 
defined in (2.18), then it is called classical and is denoted by ~ .  

A bond is defined as a set B c Z a for which ~ e  4: 0. In particular, a 
quantum bond is defined as follows: 

D e f i n i t i o n  2.1. A quantum bond is a set B for which ~ : ~  0. In the 
sequel, the symbol _B will often be used to denote the support of qsq and 
will also be referred to as a quantum bond. 

The range of the interaction is defined as the maximum of the 
diameters of the bonds (defined with any convenient translation-invariant 
notion of distance on 7/a). The classical part of the interactions will be 
assumed to be of finite range. The quantum perturbation can be of infinite 
range, but is assumed to satisfy a summability condition of the form 

Z II~qll ehg(B) < ct3 (2.43) 
B~0 
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for h-> 0 large enough. Here g(B) is the volume of the minimal connected 
set covering B [the precise definition is given in (2.61)]. 

If the occupancy of every site of the lattice Z a is chosen to be one, then 
the lattice gas reduces to a spin system. 

We now introduce the notion of boundary conditions, which is of 
crucial importance in the determination of phase diagrams. As mentioned 
before, we restrict our attention to finite subsets A of the lattice 7/a. We 
choose some periodic configuration s on 7/a, which is defined by the 
occupation numbers n.,.~ = s,.~ for x ~ 2 ~a, 1 ~< a ~< N. The exterior configura- 
tion s..~,, with A" := Za\A is called a boun&oT condition. 

It is evident that our formalism must be generalized, because the con- 
figuration s does not correspond to a vector in the Fock space ~e( .~f~) .  
The vectors in Fock space are square-summable superpositions of vectors 
with finite total occupation number, whereas, for the vector Is), corre- 
sponding to a configuration s, this number is infinite (unless s,_,=0 for 
all x, a). 

Thus, instead of considering the Fock space ffe(JC I ~1), we consider a 
Hilbert space of states corresponding to local alterations of the configura- 
tion s, Technically, this means that we construct a space ~'*e(dzf ~ )  which 
has Is) as a cyclic vector. This construction is possible if we can prove that 
s defines a state, i.e., a positive, normalized linear functional on the quasilo- 
cal C*-algebra ~J. Since ~ is generated by the identity and the annihilation 
operators, this amounts to showing that we can define expectation values 
of the form 

(s] b,.,~,...b.,., .... Is) (2.44) 

where b,.,~,. = c,.,,., or b,.,,,. = c*.,.~, for 1 ~< i <~ n. We do this through the follow- 
ing limiting procedure: We consider the vectors Is,t) e ~-e(JC (~ ~) defined by 
the occupation numbers 

I's,.~ if x ~ A  
n.,.~ = (t0 else (2.45) 

and we set 

(slb.,.,,,...b.,.,,~,,ls) := lira (s,llb.,.,~,'"b,.,,~,,lSA) (2.46) 
/ I  ~" 7r 

This limit exists due to property (2.17), which implies that the phases of the 
matrix elements on the RHS of (2.46) stabilize once A m {x~ ..... x , ,}~l .  
Our procedure defines the Hilbert spaces ~ ~ ( J C  ~ i) via the standard GNS 
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construction (ref. 6, Section 2.3.3). For A ~ Z a and boundary condition s, 
we define the finite-volume partial trace for A ~ ~A as 

Try, A "=}-" (vA | A [va| (2.47) 
0 j  

where {IRA> } is an orthonormal basis of ~,~~ ,l J of the form (2.28). 
[Note that [vA | E ~ , ( J f " ) ) - ]  

We define the Hamiltonian H~ associated with a finite subset A of the 
lattice as follows: 

HA := ~ P~ ~_BP'~ (2.48) 
_Bc~A # 0  

where ~bB~agB, and PA is the orthogonal projection operator onto the 
subspace 

{A Is): A ~.~A} 

of ff'~,(Jg(])). That is, we eliminate those matrix elements of the operators 
~8,  with B intersecting both A and its complement, that would lead to a 
change in the configuration outside A. 

The finite-volume free energy density for an interaction {~_a}, 
boundary condition s, and inverse temperature fl is given by the expression 

--1 
f ,(A) := o--7-7,, In Tr'~ e -/m,, (2.49) 

p l l l l  

Its infinite-volume limit 

f : =  Alinazu f,.(A ) (2.50) 

is the free-energy density. The limit may be taken in the sense of van Hove. 
The finite-volume Gibbs state for a set of interactions { ~_n}, boundary 

condition s, and inverse temperature fl is the linear functional on ~,, 
defined by 

~A -z A ~ Tr~l A e -Ira,, 
Tr~j e -an,, (2.51 ) 
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2.2. Assumptions on the Interact ions 

We consider interactions of the form ~ , n -  ~,, + cbq which give rise 
to a class of Hamiltonians of the form 

c l  H A = Oi j  A + V A  

B ~ ,t ~ o _B ~ ,t ~ o r q 

No te .  We remark that the self-adjointness o f  the interactions plays no 
essential role in this work. Hence we do not assume it. In particular, this 
means that the eigenvalues of the classical interactions t/,cl ~,s are allowed to 
be complex. 

We require the following hypotheses: 

( H 1 ) { ~,Jn} is a set of  classical, f in i te-range interactions parametrized 
by /L := (Ftl .... P-e-i). The "coordinate axes" of the phase diagram are 
labeled by/ t i ,  1 ~< i ~< P -  1. The range of the interactions is assumed to be 
independent of/_t. We shall assume translation invariance, but analogous 
results can be obtained for periodic interactions as well. The "classical" 
Hamiltonian H c~ is assumed to satisfy the standard hypotheses of Pirogov-  lt,'l 
Sinai theory, naTmely: There is a nonempty open set (_9 ~ R e -  1 such that the 
lbllowing properties are satisfied: 

(H 1.1) Exis tence  o f  a common  eigenbasis. There is a basis of the 
form given in (2.18) in which all operators qs~,t n are simultaneously 
diagonal, for all _/j ~ (0. 

( H 1 .2  } Smoothness  properties.  The functions (9 9 it v---. ~ n  are 
differentiable in operator norm. The functions, as well as their derivatives, 
are uniformly bounded in norm. Typically, 60 is a bounded region. If the 
functions q~,~ have a linear dependence on ~, the parameters/z; correspond 
to fields or ~hemical potentials. 

( H 1 .3  ) Finite degeneracy.  The set formed by all periodic configura- 
/ ~c1 / tions that are ground states of t _~n~, for some F_t e (9, is a finite family 

X = { s ,  ..... s . }  I2.53) 

In the present situation, a periodic configuration s is a ground state for 
{ ~)B} if 

Re e~,(s) = min Re e,,(g) (2.54) 
- ~ p e r i o d i c  - 
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where 

1 e,,(s) Y, (2.55) 
B n . 4  r 0 

The symbol IAI denotes the cardinality of the set A, and the limit is taken, 
for instance, via sequences of growing parallelepipeds. [Note: The defini- 
tion of classical ground states is more complicated in the presence of 
infinite degeneracy or nonperiodicity. See, for example, ref. 36, Appendix B, 
and references therein.] 

For periodic configurations the limit (2.55) exists, and the specific 
energy is equivalently given by the average energy contribution of each 
fundamental cell of the configuration, i.e., 

1 
e,_,(s)=~-~ ~ ee.,.(s) (2.56) 

X(~ I f "  

where W =  2U is a choice of a fundamental cell of s (i.e., a parallelepiped 
in which the length of each side is a multiple of the corresponding period 
of s), and 

c [  r 
et"(s) := ~ IB[ (2.57) 

B ~ A "  

can be interpreted as the contribution of the site x to the energy. It will be 
referred to as the specific energy "at x" of the configuration s. 

(H1.4} Peierls condition. For all /_rE(' the Peierls condition is 
satisfied for some lt-hTdependent Peierls constant J >  0. Roughly speaking, 
this means that the insertion of an excitation corresponding to a ground- 
state configuration that is different from the one on the rest of the lattice 
costs an energy proportional to the surface area of the inserted droplet. The 
constant of proportionality is the Peierls constant. For a precise statement 
of this condition, see Definition 3.1 below. 

1H1.5) Regularity of the phase diagram. The zero-temperature 
phase diagram for/_t ~ ~0. is regular. We shall explain this notion below. 

At zero temperature, the phase diagram is drawn using the set of 
ground states 

~176 := {st, E g{': Re et,(st,) = min Re el,(s,,) } (2.58) 
- .vu E .~'" - 

for each value oflt. The superscripts (o~, 0) correspond to the valnes of/3 
(proportional to t-he inverse temperature) and the quantum perturbation 
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parameter 2 to be introduced in (H2). The classical zero-temperature phase 
diagram is the family of manifolds 

5~]~;.o!...,>,.I := {it: .~,o~.o)(/,)= {Sp, ..... s?,.} } (2.59/ 

for 1 <~k ~ P, s m ..... sm.6 ~f. These manifolds are called the strata of the 
phase diagram. The phase diagram defined by these strata is regular if the 
map 

it~--,(Ree,(sl)-- min Ree/,(si) ..... R e e / , ( s e ) -  min Ree/,(s~)) (2.60) 
- - I < ~ i ~ P  - l < ~ i < ~ P  - 

is a homeomorphism of (9 into the boundary of the positive octant in the 
space R p. This means that the stratum of maximum coexistence ~,r  is a 
single point ( ~ the origin of IRe), the strata with P -  1 ground states are 
curves emanating from it ( ~  the coordinate semiaxes), and so on. The 
strata with P - k  ground states are k-dimensional manifolds bounded by 
the strata with P - k +  1 ground states. (This geometry is also known as 
the Gibbs phase rule.) 

In addition we need to assume that the determinant of the matrix of 
derivatives 

(~-~j (e(si)--e(se))], <~i.j~P-i 

is uniformly bounded away from zero throughout (9. Cases in which the 
degeneracy-breaking effects of the parameters It are due to orders higher 
than linear present additional difficulties; in particular, they fall outside the 
scope of the theory presented in ref. 4, Section 6, which we use in this paper. 

(H21 The quantum perturbation {~q} is a translation-invariant 
interaction satisfying exponential decay. The precise expression of this decay 
is based on a choice of sampling plaquettes W,,(x)= {y ~ Za: Ix; -Yi l  ~<a 
for 1 ~i~< d}. [The constant a is chosen so as to have a one-to-one corre- 
spondence between configurations and classical contours (see Section 3.1 
below).] For  a finite B c 7] a, let 

g(B) := minimal number ofplaquettes needed to 

cover B with a connected set 

Then the decay condition is given by 

(2.611 

for some constant c and some 0 < 2 < I. 

il~qll ~ c2 ~BI (2.62) 
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2.3. Examples 

In this section we give some simple examples of models to which our 
theory can be applied. For simplicity we consider models in 7/2 , but 
analogous results hold for models on 7/'/, d >  2. 

Example 1. Fisher antiferromagnet. This is an example of a quan- 
tum-spin system. For simplicity we choose the spin at each site to be 1/2. 
Hence '~,.-~ C'-. The system has a Hamiltonian given by 

[ Z -,-',-,-', K HA ~  ~  - -  . . 

L < A ' . . V >  e h A  ( ( , x  I ' ) )  d a A  

-/, E o.', Z (_l),,r,!,-,,] 
x E A  x e A  J 

[ ,2,,2, ] + t ~ (a!,l~(,l~+a,. a~. )+h.c.  (2.63) - . ,  . 

< x. y > ,-h A 

a!,9, i =  1, 2, 3, are the spin operators (Pauli matrices); <x, y> and <<x, y))  
denote nearest neighbor and next-nearest neighbor pairs, respectively, and 
the notation B~hA is used to refer to the set 

{ B c Za: B n A :~N} (2.64) 

Finally, t is an exchange coupling constant. 

Note. In this and the following examples we use square brackets to 
separate the classical and quantum parts of the Hamiltonian [as in (2.52)]. 
Moreover, any perturbation satisfying hypothesis (H2) can be added to the 
quantum parts. 

This model gives rise to phase diagrams of different degrees of 
complexity depending on which of the couplings are varied. Let us first 
consider it = (h, hstagg). The parameter h stagg modulates a staggered fieM 
whose sign changes as the parity of Ixl : =  Ix , I  + - . .  + [xal changes. The 
ferromagnetic coupling K is assumed to have a f ixed nonnegative value. 
We use the symbols " + "  and " - "  to denote spin up and spin down, 
respectively. 

For K >  0, the set of ground states of the classical part is 

J r  {s+, s_ ,  s+_ ,  s_§ (2.65) 

where s+ is the a l l -"+"  configuration, s_ the a l l - " - , "  and s+_ and s_+ 
are the two N+el configurations with " + "  spins in one sublattice and " - "  
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spins in the other one. The fundamental cell of these periodic configura- 
tions can be chosen to be a 2 x 2 square. Hence we write symbolically 

+ +), ( - ) ,  :), =(+_ -+_) s+ ( +  + 

(2.66) 

The corresponding zero-temperature phase diagram is depicted in Fig. 2a. 
The oblique lines for h > 0 are given by the equation 

h = 2 + IhSt"ggl (2.67) 

The corresponding lines for h < 0 are given by the equation 

h = - 2  - Ihst"ggl (2.68) 

T o  construct the ground-state phase diagram, it is convenient to rewrite 
the classical part of the Hamiltonian as a sum over terms corresponding to 
2 x 2 blocks M, i.e., 5ZM ~ t  with 

1 o!,-"'o',;' ...... - ~  Z 
- -  ( x , y )  c M  ( ( x , y ) )  ~ M  x E M  

11 s t a gg 
( _ I ) N  ~!3, (2.69) 

4 x ~ M  

" - - - ~ [  1 %  4J, v + J, % - J /  

(a) 

Fig. 2. 

. ._..~1 > h ~gg 
{ q.+.),~)} co) 

Zero-temperature. phase diagram of the Fisher antiferromagnet (Example 1) for 
(a) K>O, (b) K=O and [hi <2. 
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and find the minimal energy configurations over any such block M. This is 
because the operators ~ constitute an m-potential/16) 

This diagram is regular in the vicinity of the maximal-coexistence 
points P and Q. At zero temperature, this model exhibits a transition 
between ferromagnetic and antiferromagnetic order when any one of the 
oblique coexistence in the phase diagram is crossed. Our theory will show 
that this transition survives at nonzero temperatures and/or in the presence 
of small quantum perturbations, like the spin-flipping term added in the 
second line of (2.63). An alternative proof of this fact is presented in ref. 2. 

If we set K =  0, the oblique coexistence lines emanating from P and Q 
acquire infinitely many periodic ground states. For the upper lines these 
ground states result from periodic arrangements of the configurations 

- ++) (2.70) 
- + 

+ + -- + 

For the lower lines the configurations which contribute are the ones 
obtained from the above set by a spin flip. These sectors of the phase 
diagram therefore lie outside the scope of our theory [violation of(H1.3)]. 
Nevertheless, we can still analyze the regions around the open vertical 
segment joining P with Q. This corresponds to fixing the parameter h at 
some value such that Ihl < 2 and considering the model to be parametrized 
by h stagg alone. This yields the phase diagram of Fig. 2b. 

The fact that in each case the relevant classical part of the 
Hamiltonian satisfies the Peierls condition follows from a general theorem 
of Holsztynski and Slawny ~61 and the stability of the Peierls condition 
under perturbation (Proposition 3.2 below). 

Example 2. Simple fermionic model. We consider spinless fer- 
mions with interaction 

= I ~ n.,.n,.- K HIj n,ny 
L < _v, .r > �9 A << .v, y >> ch iI 

-/~ Z n,-/L~,~ Z ( -1)1't n,.] 
A" E ."| .X" E .4  d 

+[t ~ c.*e.,.+h.c.] (2.71) 
<x.  y )  ~ : 1  

A lattice site can either be empty or occupied by a single fermion. Hence 
J~. 2 C 2. This model can be obtained fi'om that of the previous example by 
a transformation of spin variables to lattice gas variables. By suitably trans- 
cribing the results of Example l, we obtain, for K > 0, the zero-temperature 
phase diagram shown in Fig. 3a. 
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(:~) 

~t 

~) o o  oo 

?=4-2K 

(a) P stae'g 

( : : )  0 (:o) 

Fig. 3. Zero-temperature phase diagram of the simple fermionic model of Example 2 lbr 
(a) K > 0  and (b) K = 0  and O~tt < 4 - 2 K .  

The latter involves the ground states 

, , g '=  { s . ,  s .  ,, s .} (2.72) 

where s. is the configuration with exactly one fermion at each site, while s .  
and s .  are, respectively, the half-filled configurations having one fermion at 
each site of one of the sublattices and no particle in the other sublattice. 
Diagrammatically, 

:) ,273, 
The oblique lines in Fig. 3a are given by the equation 

/t = 4 - 2 K +  ]ps,,g~[ (2.74) 

This diagram is regular in the vicinity of the maximal-coexistence 
point P. For K =  0 the oblique lines become lines of infinite degeneracy, 
which ground states having, in addition to the above configurations, (2.73), 
the following ~ne: 

(: :) 
and the three others obtained from it by rotations. Hence our theory can 
only be applied in the region around the vertical coexistece line up to, but 
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e.x'chlding, the point P, i.e., to phase diagrams as in Fig. 3b. The stability of 
these phase diagrams at low, but nonzero temperatures and under quan- 
tum perturbations has been studied in ref. 2t, in which the K = 0  model 
was introduced, and in ref. 3, where the analogous region of the K > 0  
model was analyzed. 

E x a m p l e  3. Simple model of fermions with spin. By combining 
elements from the previous two examples, we can easily generate simple 
models involving itinerant particles with spin which satisfy the hypotheses 
of Section 2.2. For instance, consider spin-l/2 fermions with Hamiltonians 

[ ( a'-%'-")~ . H j~ = ~ .I + ,. 
I1 n 

I ~  ~ I ~ 

�9 ( x. y) �9 A Z 

- I  t 2 n,.--,u ~tagg ~" (--1) I'1 n.,. 
A" E i l  A" ~ A 

- 1 Ixl o-131n ] - h  ~, o-%.,_ . , _ - / 1  s''~ y' ( ) _,- .,. 

.x" E , |  .x" E , |  

+ V.,I (2.75) 

We have defined n , - : =  Z~= -c ] n.,.,. In the most general case, namely when 
we choose some fixed K > 0  and consider the other four constants as 
parameters, the phase diagram is regular around the maximal-coexistence 
point 

P =  (lt = 2  - 2 K ,  l?'~'gg=0,/7 =2,  hS~gg=0) (2.76) 

where there are five degenerate ground states: 

~--- , S + _ =  , S _ +  -~- S + +  -F - -  - -  

(2.77) 

S + .  "-~- �9 S + -~- 
+ 

In Fig. 4 we present the cross section of the h > 0  region of the phase 
diagram through the plane h sLagg = / / s L a g g  = 0. 

The validity of the Peierls condition is again a consequence of the 
results of Holsztynski and Slawny ~ ~6) and Proposition 3.2 given in Section 3. 
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Fig. 4. 

4 - 2 K  

2K 

++ +O O+ {(..),(o.),(.o)} 
(::) 

~((: :),(:;),(;:),(~o),(o ~)} 
\ 

ih. 2K§ i-§ '{(::) ' ( ; ;)  ,(; : ) }  ~ {(-';1,(;:1} 
{(;2),(~ 

I I - / z  

2 - 2 K  

Zero-temperature phase diagram of the model of fermionic spins of Example 3. 

In subsequent papers (8' ~2) we consider a broader class of Hamiltonians 
whose classical part need not have a finite number of ground states (and 
hence may violate the Peierls condition). In ref. 8 we develop a perturba- 
tion technique which, together with the contour expansion methods of this 
paper, permits us to study the degeneracy-breaking effects of a quantum 
perturbation on the classical part and to analyze the phase diagram of the 
Hamiltonian at low temperatures. 

2.4. The Main  Theorem 

Our results show that, under the hypotheses listed in Section 2.2, the 
phase diagrams obtained at low temperatures and for small quantum per- 
turbations are only small deformations of the zero-temperature diagram 
corresponding to the classical part {~,18}. The precise statement of this 
result requires a notion of stability of-phases, which is justified by the 
following theorem. 

T h e o r e m  2.2. Under the hypotheses of Section 2.2, there are con- 
stants Y> 0 and eo > 0 such that, for each fl and 2 in the region 

max(e -p3, 2) <eo (2.78) 

there exists a family of functions {f'q(/J)}l<~q<~P such that whenever 

Ref~,(/j)= min Ref',~(~t) (2.79) 
I <~q<~P 
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for some particular values of fl and 2, then: 

(i) f'u(l/) coincides with the true free energy of the system. 

(ii) The infinite-volume limit 

lim Tr] A e-Pn" := (A>~f:, 
A ," ~,1 Tr'~f e-/~n' 

(2.80) 

exists for any local operator A. 

(iii) The inequality 

I<A>~e>- <spl A [st,> [ ~< IIAII. IDI O(eo) (2.81) 

holds for any operator A e ~z~- 

The actual definition of the functions f'q requires the notion of 
truncated contour ensembles; hence it will be postponed until Section 7.2. 

We shall say that there is a stable Sp-phase whenever (2.79) is satisfied. 
In analogy to (2.58), we introduce the sets 

Y'P'~'~(p) := {s r: the st,-phase is stable for { Ces } } 

to define the strata 

(2.82) 

St,.:-, - {L': ~ 'P '%_' )= {s,, ..... s,,,} } (2.83) { O P ' " , s p ~ - }  " - -  

The main result of our paper is the following theorem: 

Theorem 2.3. Under the hypotheses of Section 2.2, for each fl and 
2 in the region (2.78) there exists a nonempty open set ~c/, c R  p - '  such 
that: 

(i) The phase diagram defined by the strata ~ ,  lot ....... ~.1 
regular [in the sense described below (2.60)] and these strata are differen- 
tiable manifolds. 

(ii) As eo---,0, the strata (9/,.c~5 plIj';'~ tend to the zero-tem- 
{ '~q ,-.-, Ok I 

~ , 0 )  pointwise in lt. In particular, the perature classical strata C o ~,~ c.,-~, ........ ~1 
distance between the maximal-coexistece manifolds ~,.~/~'z~ and o9~!,~? '~ is 
O(eo). 

We shall say that a zero-temperature, classical phase diagram is stable, 
under temperature and quantum perturbations, if the conclusions (i) and 
(ii) of the theorem hold. 
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Using our contour-expansion methods, we can further prove that, for 
a fixed value of it corresponding to a single-phase region of the phase 
diagram, the free energy density and the quantum expectations defined in 
(2.80) are analytic functions of/? and 2 provided (Re fl)-~ and 121 are small 
enough. 

As an illustration, let us describe the consequences of this theorem for 
the examples of Section 2.3. For the Fisher antiferromagnet, we conclude 
that, for K >  0 and e0 small enough, the phase diagram around maximal- 
coexistence points looks like a smooth deformation of the diagram of 
Fig. 2a in the vicinity of the points P and Q. Symmetry considerations 
imply that the coexistence line between N~el phases remains at h stagg = 0. 
These results have also been obtained in ref. 2, using model-tailored 
dressing transformations. Likewise, our theory implies that for K =  0 and 
Ihl < 2 the phase diagram of Fig. 2b remains valid for small eo. In fact, the 
diagram remains unchanged because, by symmetry, the coexistence point 
stays at h stagg= 0. 

Similar conclusions apply to the spinless fermion system of Example 2. 
In particular, we conclude that, for K=0 ,  the phase diagram of Fig. 3b 
remains unchanged when small kinetic terms (i.e., quantum perturbations) 
are added and the temperature is increased, as already proven in refs. 21 
and 3. Besides, we derive the stability of the phase diagram for K > 0  
( Fig. 3a) around the point P. 

For the spin-l/2 fermion model of Example 3, we obtain the stability 
of the phase diagram around the maximal-coexistence point (2.76). By 
symmetry, the coexistence between N6el phases (defined by boundary con- 
ditions s+_ and s_ +) remains at h stagg = 0 and that of the half-filled phases 
Cboundary conditions s++ and s +) at , t / s t a g g  = 0. Hence we also obtain the 
stability of the (nonregular) phase diagram of Fig. 4 around the point P. 

The implications of Theorem 2.3 for more interesting, t-J-type models 
will be the subject of a forthcoming paper, f~21 

3. LOW-TEMPERATURE EXPANSION FOR 
Q U A N T U M  PERTURBATIONS 

The first step in the proof of our main result, Theorem 2.3, consists in 
constructing a suitable low-temperature expansion. This is the content of 
the present section. Our expansion is a type of polymer expansion in which 
the polymers are called quantum contours (and the consistency rules are 
more complicated than plain nonintersection). They are a generalization of 
the well-known classical contours of Pirogov-Sinai theory (see, e.g., ref. 33, 
Chapter II). We first recall the definition of these classical contours and of 
the associated Peierls condition. 
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In this and the following section we work with a f ixed value of the 
parameters ~ ~ (P. Consequently, the parameters play no rule and are hence 
not displayed. The definition of the contours depends only on the reference 
configurations X = {s~ ..... se} and on the range r of the interactions. The 
parameters will be reintroduced in Section 7, where we will study the effect 
of varying them. 

3.1. The Classical Contours.  The Peierls Condi t ion 

To define these contours we start with a set of periodic reference con- 
figurations • = {sl ..... se} and a number  r > 0 which is an apriori bound 
on the range of the classical interactions to be considered. We fix sampling 
p&quettes W , ( x ) =  {ys2ea: I x i - y i l  <~a for 1 <~i<~d}. The size a must be 
strictly larger than (i) the periods of the reference configurations s~ ..... se 
and (ii) the range r. 

Condition (i) implies the following extension property: 

If co coincides with the configuration sp on a plaquette W,(x)  
and with Sq on W,,(y) with dist(x, y)~< I, then s~ = Sq (3.1) 

To simplify the notation, we shall henceforth measure the cardinality 
of subsets A of ~,a in units of sampling plaquettes: 

card A 
IAI := a" (3.2) 

Two sets A and B in Z a are said to be connected if dist(A, B) ~< 1 in lattice 
units. A subset M of a set A c Z a is called a component of A if M is a maxi- 
mal connected subset of A, i.e., M is connected and M c M '  c A, M :/: M '  
imply that M '  cannot be connected. 

The classical contours are constructed out of "incorrect" plaquettes. 
A site x is said to be p-correct for a configuration co if the latter coincides 
with sp on every sampling plaquette that contains x. The set of sites that 
are not p-correct for any p, 1 <~ p ~< P, are referred to as "incorrect." The set 
of plaquettes for which at least one site is "incorrect" form the deject set 0o9 
of the configuration co. Note that 

Oco= U {W,,(x):~o,~.,.,.):/:(s,)ju l <~p<.P} (3.3) 
x e Z  d 

Typically we will consider configurations co equal to some reference con- 
figuration s ~ ~r  almost everywhere, i.e., co differs from s only on a finite set 
of lattice sites. In this situation &o is a finite set. We shall refer to the 
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plaquettes belonging to the defect set as excited plaquettes and the com- 
ponents of the defect set as excitations. 

A (classical) contour of a configuration co is a pair 7 = (M, toM) where 
M is a component of the defect set aco. The set M is the support of 7, to 
be denoted by supp ),. We shall often refer to the support of a contour ), 
again using the symbol 7 and use the abbreviation 

lyl := Isupp y[ (3.4) 

According to our definition, the sallest contour is the one obtained 
when only a single site is "incorrect"; e.g., for a quantum spin system 
this results when one spin is misaligned, the corresponding contour being 
formed by all the plaquettes containing this spin. Hence the minimal non- 
zero value of 171 is given by 

( 2 a -  1)a/ad>~ 1 (3.5) 

Each configuration defines a unique family of contours from which it 
can be reconstructed, but not all families of contours correspond to 
admissible configurations. The additional restrictions are that contours 
must not intersect and that configurations in the interiors and exteriors of 
nested contours must match. A family of contours which corresponds to an 
admissible configuration will be called compatible. Henceforth, we shall 
only consider finite contours (i.e., Isupp 71 < oo). For  each such contour 7 
the space za \ supp  7 is divided into a finite number of components. 
Moreover, by the extension property (3.1), we can extend the configuration 
on a single plaquette in a component to a unique configuration of X in 
that component. In this way we can label each connected component of 
Za\supp 7 by a particular reference configuration. Thus, we obtain the 
unique configuration co~' that has 7 as its only contour. We shall refer to 
such a configuration as a one-contour configuration. The only infinite com- 
ponent of 7/a\ 7 is called the exterior of the contour, Ext(7), and the union 
of the other components constitute the interior, Int(7). The union of com- 
ponents of Int(7) labeled by a reference configuration Sq is called the 
q-interior, Intq(7). The contour is called a p-contour if its exterior is labeled 
by the configuration Sp ~ Jd. 

A contour 7 of a configuration co is called an exterior contour of co if 
its support is not contained in the interior of any other contour of co, i.e., 
if 7 c Ext(7') holds, for any other contour 7' of co. 

Let {~b~} be a set of classical interactions of range not exceeding r. 
The one-contour configurations can be used to compute energies of any 
allowed configuration, as we now explain. 

822/84/3-4-11 
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Let o9 r be a one-contour configuration which has the p-contour Y as its 
only contour. The energy cost of 7, relative to its exterior configuration sp, 
is given by 

H~(o~ I s,)= ~ [ ~ ( c o ~ ) -  ~ ( sp) ]  (3.6) 
B,'B [ Int(~,) ~ s u p p  7 ] 

where we have used the notation of (2.64). It is convenient to use the 
decompositionC37) 

~s(oor ) = ~ IB n supp 71 ~s(COr ) 
B rh l i n t ( y )  u s u p p  y]  [B] 

to write (3.6) in the form 

]B n Int Yl ~s(ogr ) 
+~ IBI 

+ ~ [ B n E x t y [  ~s(coy ) (3.7) 
s.t~,,t(r) ~,~upp r] IB[ 

P 

HCl(o)Ylsp)=E(7)+ ~ ~, [e,,(s,)-ex(sp)] (3.8) 
u = l  x ~ ln tu(7)  

where e,.(s,) is the specific energy "at x" [see (2.57)] of the configuration 
s, and 

E(7) = s~ [B n supp 71 
Inl [ ~ ( c o r )  - ~ ( s p ) ]  (3.9) 

is the contour energy of Y relative to the energy of its exterior configuration. 
In obtaining (3.9) we have profited from having chosen the plaquette size 
a larger than the range r, so that 

(ogr)s=(s,,)s if B n  Int,(y) # ~ (3.10) 

for any B with ~ ~ 0, and, since Y is a p-contour, 

(coY)n = (sp)s if B n  Ext(7) ~ (3.11) 

Hence the latter bonds do not contribute to the contour energy E(7). In 
situations of maximal coexistence, all the reference configurations Sp ~ 
are ground-state configurations and have the same specific energy. In this 
case, it follows from (3.8) that the energy cost of a contour 7 is simply 
given by E(y). 
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Consider a region A such that 

( 09~')za\A = ( Sp)7,\A (3.12) 

The total energy of the configuration co r [needed for the partial trace of HA 
in (2.47)] is given by 

H~'.~(r ~'} = H~(ogr I Sp) + ~ ~(Sp)  
BcbA 

We notice that a decomposition analogous to (3.7) yields 

(3.13) 

�9 ~(Sp)= ~ ex(Sp)+ ~, [BnAC[ ~clB(Sp) (3.14) 
B,~A ~A S~A IBI 

However, the last term of (3.14) is a boundary term which does not contribute 
to the free energy density or to the expectation values of observables, (2.51 ), 
and is independent of the configuration co. Hence we shall neglect it. 

The energies of configurations with a finite number of contours (which 
are the only ones relevant in the sequel) can be reconstructed from energies 
of its contours. Let co = co r be a configuration corresponding to a com- 
patible family of contours F =  {?] ..... Yk} and coinciding at infinity with 
some reference configuration Sp. This implies that the exterior contours of 
the configuration co are p-contours, Let 09 ~', ..... co ~'k be the corresponding 
one-contour configurations. The energy cost 

Hr sp) = ~ [ ~ ( c o  r) - ~ ( S p ) ]  (3.15) 
Bob [Intl,,j) u supp )~/] 

of co r, relative to the exterior configuration sp, is simply the sum of one- 
contour energy costs: 

k 

Hd(cor I Sp)= ~, Het(corJl s(?j)) (3.16) 

where s(yj) is the reference configuration in the exterior of yj. It follows 
from Eqs. (3.13), (3.14), and (3.16) that the total energy of co r is given by 

P 

H.~l(co)= ~ e.,.(Sp)+E(F)+ ~ ~ [e.,.(s,)-e,.(sp)] (3.17) 
.x'~A u ~  1 x~lu  

where 
k 

E(F) = ~ E(T:) (3.18) 
J 

822/84/3-4-11" 
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and l,, is the set of sites in A that are either u-correct or belong to a 
u-contour. This expression is to be used for the partial trace Tr~ in (2.47). 
Hence the configuration m r must be such that 

(o)r)zaXA = (Sp)z,,XA (3.19) 

Remark. The contours 7j may extend outside A. This happens if co has 
some incorrect site on the boundary OA. In this case all those plaquettes 
which contain this site, but extend outside A, also belong to a contour. 
Hence, in general, the contours are contained in the larger set formed by the 
plaquettes that touch A: 

A := U { w,,(x): w,,(x) n A ~ ~ }  (3.20) 

This means that in E()Jj) one may be counting bonds B c A "  that are not 
counted in Hw However, the identity (3.17) remains valid, because these 
bonds do not contribute to the energy of a contour [see sentence following 
(3.11)]. 

Note. We use the letter 7 to denote individual contours and F to 
denote families of contours. 

The Peierls condition can now be stated in terms of the contour 
energies defined in (3.9). 

Definition 3.1. An interaction ~c~ satisfies the Peierls condition 
with Peierls constant J if 

Re E(),) >1 J [71 (3.21) 

where E(7) is the contour energy defined through (3.9) and [71 is as in (3.4). 

In general it is not simple to prove that the Peierls condition is 
satisfied for a particular model. One way of doing so is to show that the 
excess energy of each excited plaquette of the configuration is nonzero, 
irrespective of the particular configuration on the plaquettes surrounding it. 
However, this is true only in several constrained systems or for highly sym- 
metric situations (as in the Ising modelllS'91). In most systems, it is often 
energetically favorable for a plaquette to have an "incorrect" configuration 
if the surrounding plaquettes are already excited. Hence, calculating the 
excess energy of a single excited plaquette is not sufficient for verifying the 
Peierls condition. Instead, one may need to compute the energy balance of 
a possibly complex arrangement of plaquettes. However, one can avoid the 
complicated calculations that this involves by resorting to a theorem due 
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to Holsztynski and Slawny, ~16~ which states that the Peierls condition is 
satisfied if the interaction can be written as an m-potential, i.e., a potential 
admitting a finite number of ground states that minimize the contribution 
of each bond simultaneously. The only drawback of this important result 
is that its proof does not provide any estimate of the Peierls constant, a 
fact that in turn prevents one from explicitly estimating the range of 
temperatures for which our results concerning the phase diagram are 
valid. 

In this paper we have the additional complication of having to verify 
the Peierls condition simultaneously for a whole family of interactions, 
parametrized by p [hypothesis (H1.4)]. However, the condition imposed 
on the size of the sampling plaquettes, namely a > r, simplifies the situation, 
since it allows us to make use of some perturbative results (discussed, for 
instance, ref. 36, pp. 1126-1127) which can be summarized in the following 
statement: 

Proposition 3.2. Consider a family of interactions c~ { ~,,s} differen- 
tiable in it. Assume that, for some value Po of the parameter-s, the inter- 
action { ,cl ~,0B} has a finite number of perioc/ic ground states Y = {sl ..... se} 
and that if satisfies the Peierls condition with Peierls constant Jo. Then for 
6 > 0 small enough, there exist open neighbourhoods ~0a~po such that all 
the interactions ~ { ~,B} with l /~  (9~ satisfy the Peierls condition with Peierls 
constant Jo - ~ and- for the same set of reference configurations :/{-. 

For instance, to verify the uniform-Peierls condition hypothesis 
[(H1.4) in Section 2.2] for the examples of Section 2.3, it is enough to 
check it at the points of maximal coexistence, which is an easy application 
of Holsztynski-Slawny theory. 

3.2. The  Duhamel  Expansion 

We start by establishing a low-temperature expansion for the partition 
functions 

~,.(A) = Tr'~ e -Ira., (3.22) 

for finite regions A c 7/a with boundary condition s = Sp ~ ~'~. To compute 
this trace we use the basis of ~-~(Jt ~ spanned by the vectors IrA | 
corresponding to configurations rASp which coincide with sp outside A. 
This basis is chosen because H,~ l is diagonal in it [hypothesis (H1.1)]. In 
turn, each of the configurations vASp is uniquely determined by a com- 
patible family of contours F p = FP(VASp) .  The superscript p indicates that 
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the exterior contours, i.e., the contours of / 'P  whose supports are not con- 
tained in the interior of any other contours of F p, are p-contours. We can 
therefore relabel the basis in terms of these contours and write 

3p(A) = ~  (FPl e -alia IFP> (3.23) 
F P  

(henceforth we shall denote ~ = 3p). The presence of A in the above for- 
mula implies that all the contours involved must have supports contained 
in the larger set/~ defined in (3.20). 

Our starting point for the expansion is the (formal) series 

e x p ( - f l H n ) = e x p ( - f l H ~ ) +  Z dr, ... dr,,~9 f l -  ~,, r, 
n ~> 1 i =  I 

x exp ( - r l  H~) . . .  (--VA) exp(--rnH d) (3.24) 

which is obtained by iterating Duhamel's formula 

exp[ - f l (H~ + VA)] 

= e x p ( - f l H ~ ) -  dr exp[ - ( f l -  r) ItS] VA exp[ --r(H~ + VA) ] 

(3.25) 

We perform the following manipulations: 

(a) Take Tr~ of (3.24) as in (3.23). 

(b) Insert 

r p  

around each operator VA in (3.24). 

(c) Use formula (3.17) to compute the (diagonal) matrix elements 
</'Pl exp( - rH~)  IFP). 

(d) Expand each Vn as a sum of ~q's. In this way, at each time step, 
we obtain matrix elements involving only one quantum bond, or, for fer- 
mions, one creation-annihilation monomial. 
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The result is 

x { l + ~  ~ ~ IPodq...f~dr,, 
n>~l P P P /-'6 "FI ,...,F~ BI ,..., Bn 

F r compatible family 
F~ = FnP supported on A 

xo(  
x ( e e l - o ~  It,f_, ) . . .  <r~l-o}:  I r f ) ( e l l - o } ,  leg) 

" ] 
x l - [ e x p -  f l -  r," 2 + q  2 + . . . + r ,  2 

,,=l i=l .,-~t,,(r~) .,-~ t~ .,- ~ z,,~ r,p,) 

x [ex(s,,) - -  e x (Sp )  ] } (3.26) 

where O is the step function [i.e., O( t )=  1 if t > 0  and 0 otherwise], and 
I,(FF) refers to the set of sites {x} in the subset 

U [supp y w Int y] 
) , E F  p 

of the lattice, which are either u-correct or belong to a u-contour. 
Expression (3.26) can be interpreted as a "sum" of terms each of which 

is labeled by a sequence of the form 

r~ = (Fg, BI, Ff ,  rl ..... ~ ,  Fo ~, r,,) (3.27) 

where n is zero or a natural number. Each F f  is a compatible family of 
classical contours in A having Sp e ~ as its exterior configuration. The rs 
are real numbers in the interval [0, fl] with 

~-~ ri ~/~ (3.28) 
i = l  

and each _B i is a quantum bond. The sequence can be visualized as a piecewise 
cylindrical surface in d + 1 dimensions formed by cylindrical pieces of sec- 
tions F F and "fiat" bridges corresponding to the quantum bonds _B i defined 
in Section 2. I. 
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We shall refer to [0, fl] as the "time" axis, and to Z a~ - ~_'lx {0} as the 
"spatial" coodinates. In our construction, the boundary condition in the spatial 
direction is defined by one of the ground states. We always impose periodic 
boundary conditions in the "time" direction, i.e., throughout our analysis, the 
interval [0, fl] is endowed with the structure of a circle. This corresponds to 
taking the trace of the Boltzmann factor exp( - f i l l , l )  as in (3.23). 

Let V be a piecewise-cylindrical region in d +  1 dimensions of the form 

V = A x [ r l , r 2 ] ,  AcY-  a, r l , r 2 ~ [ 0 ,  fl] (3.29) 

In the following we shall use the symbol J v to denote a summation over 
sites x in A (divided by a a in accordance with our choice of sampling- 
plaquette units) and integration over the continuous variables r, i.e., 

:= dr Y' (3.30) 
V .x'~/1 

The surface YP can be considered to be constructed in the following 
manner: ]cr has a section F~' at "time" zero, which grows cylindrically dur- 
ing a "time" interval of length ( f l -Z ' /=~ r;) at the end of which _B1 is 
placed transversely, and the section changes suddenly to F~'. This results 
from the action of ~ q .  The section F~' then grows cylindrically during a 
"time" interval r~ and so on. The action of the last quantum interaction 
q~q restores the section to Fo p. This section propagates unchanged over a 
final "time" interval of length r , .  This space-time picture motivatives us to 
rewrite (3.26) in the following abbreviated form: 

.Ep(A) = exp [--IA• 1 

x"~"w(Ye )  [I exp - [e,.(s,)-e,.(sp) ] (3.31) 
TP tt ~ 1 u 

The space-time region L,, is the union of cylinders of bases I,,(F~') and 
heights z;. Its volume is given by 

It.I = ~ r, II.(FDI (3.32) 
i = O  

where we have denoted ro : = f l - Z T = 1  r;. Hence, using the notation of 
(3.30), we have that 

= i 1 z  3.33  
i = O  0 a x ~ l u ( F i p )  
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The definition of the weights w(]cp) can be readily inferred from (3.26). By 
convention, the case 17 = 0 corresponds to ]cp = ~ ,  and we define w (~ )  = I 
and l , , ( ~ ) =  ~ .  Following the analogy with classical contours, it would be 
natural to refer to the maximally connected components of the surface ]cp 
as quantum contours. This is meaningful only if the "sum" (3.31) can be 
written as a "sum" over compatible families of such putative contours. This 
is possible if the integrals over the r~ factorize and if the weights w(]cp) can 
be written as a product of weights corresponding to individual, disjoint 
contours. In Section 4 we shall prove that these factorization properties are 
indeed satisfied. 

3.3. Q u a n t u m  C o n t o u r s  

In this section we give a precise definition of quantum contours, dis- 
cuss their properties, and introduce the quantum Peierls condition. 

De f in i t i on  3.3. A p-quantum contour for an interaction satisfying 
the hypothesis H2 of Section 2.2 is a sequence of the form 

~P = ( r  p, B1, Ff ,  r, ..... _B,, Fg,  w,,) (3.34) 

where n is a natural number (to be referred to as the number of transition). 
Each F~ is a compatible family of classical contours having sp E ~/" as 
exterior configuration. Each ri is a nonnegative real number such that 
Y~'i'=lri<~fl, and each _B i is a quantum bond. In addition we have the 
following restrictions: 

(i) F; arises from F i_1 through the action of ~ } .  This action can 
change the "spins" or the occupation numbers only in a subset of Bi (which 
can even be empty). Therefore 

0~< I I & l -  IF,- , I  I ~< g(B~) (3.35) 

(ii) The surface resulting from the toroidal boundary conditions in 
[0, fl] is connected (Fig. 5) or linked (Fig. 6b). (The condition of linking is 
relevant only in the case of anyons.) 

We shall omit the superscript indicating the exterior configuration 
whenever it plays no role in our discussion. 

Due to the periodic boundary condition, the "time" axis has the 
topology of a circle. We make a distinction between contours that extend 
from "time" zero to "time" j~ and ones which do not. The former will be 
referred to as long contours, while the latter will be called short contours. 
Some examples of these are illustrated in Figs. 5 and 6. 
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0 - - - -  

(o 11 

0 - 

(o21 

B-~-- B 
0 O 

(03)  (o41 

Fig. 5. Examples of connected quantum contours. (a l l  Long contour; (a2) long contour 
with no connected section; (a3) long contour (connectedness results from periodicity in the 
"time" direction); (a4) short contour. 

As mentioned above, a contour (P represents a surface in d +  1 dimen- 
sions formed by successive cylinders of spatial sections F i and time-height 
r~ and flat pieces B,., i = 1 ..... n, located at each transition. A quantum con- 
tour may have no connected section (Figs. 5a2, 5a3 and Figs. 6bl,  6b2), 
but the different connected components cannot be very far away from each 
other, because they must become connected or linked through the actions 
of 4~q o~q As a consequence 

Sections of a quantum contour are such that no more than 
g ( B i )  + . . .  +g(B,,) additional plaquettes are needed to make 
them connected 

(3.36) 

(This statement is false in d =  1.) Because of this, we shall think of the 
quantum bonds B as "glue" and we shall refer to their cardinality IBI as 
the "number of glue plaquettes." Note that observation (3.36) is also true 
for contours with no connected projections (Fig. 6). This is because if 
g ( B ~ ) +  . . .  +g(B,,) glue plaquettes are needed for one component of a 
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, B  

0 0 

( b l )  ( b 2 )  

_ _ 

0 - -  - -  

( b 3 )  0 - -  - -  - 

( c )  

Fig. 6. Examples of quantum contours. (bl)-(b2) Linked contours; (b3) a linked contour 
whose projection is not connected; (c) a surface that is not a quantum contour, even though 
its spatial projection (= orthogonal projection onto 7/a x { 0}) is connected. 

quantum contour to encircle another one, then an even smaller number of 
glue plaquettes is required to connect the two components. 

A quantum contour ~ also has a well-defined notion of exterior and 
interior, with a unique configuration corresponding to each of its con- 
nected components. In analogy with the classical case, we shall use the 
notations Ext(C) and Intq(~) to refer to them. We also define the support, 
supp ~, of a quantum contour ~ as the union of the corresponding defect set 
(in ZdX [O, fl]) and the sites occupied by each of the quantum bonds B,.. 
Let 

ILl := ~ Irl (3.37) 
yeF~ 

Then the area 1~1 := [supp (I is computed by adding 

[~1• := Wol @ -  ~ ~ , ) +  IF, I r,  + ... + ~  IFol 
i=1  

(3.38) 
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which is the sum of the areas of the cylindrical portions, to the number of 
sites only contained in the glue plaquettes. This last number is bounded 
above by the total number of glue plaquettes: 

IB(C)I :=g(B,)  + ... +g(B,,) (3.39) 

hence 

I(1 := ]supp (1 ~< I~'li + ]n(()l (3.40) 

A quantum contour ( is said to be an exterior contour of a family of con- 
tours if its support is not contained in the interior of any other contour of the 
family. As in the classical case, we shall say that two contours are compatible 
if their supports do not intersect or form linked surfaces, and the labels of the 
configurations match, i.e., the exterior labels are the same if the contours are 
mutually exterior or, if they are nested, the exterior label of the internal contour 
coincides with the label of the component of the interior of the larger contour 
that contains it. A family of contours is compatible if its members are pairwise 
compatible. Such families can be associated to configurations on 7/a• [0, fl]. 

Note. The condition of nonlinking of surfaces is not relevant for 
bosons or fermions. However, in view of applications of our theory to 
particles with other statistics, we shall include this condition of nonlinking 
in the definition of compatibility. 

The weight of a quantum contour ( is given by 

[0 1 w(~)= <v,[-,p~, IV,_,> 
i 

( )  1} xexp - E(Fo) fl-i__~ l r  i + E ( F i ) r l + . . -  +E(Fo)  r,, (3.41) 

The decay law (2.62) and the Peierls bound (3.21) [along with the linearity 
of E(F), Eq. (3.18)] imply the bound 

Iw(~)l ~< X IB"c)i exp[ - J  1(1 • ] (3.42) 

This bound is the quantum Peierls condition. 

4. FACTORIZAT ION PROPERTIES 

4.1. The Issue 

Besides the Peierls condition, the other crucial ingredient for the pre- 
sent theory is the factorization of the weights. Indeed, the theory relies on 
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standard cluster-expansion technology that can be applied only if the con- 
tours interact via volume exclusion or some local hard-core-type condition. 
This factorization is an obvious fact for classical systems, and it is almost 
immediate for bosonic systems. But it becomes a more delicate issue for 
fermions because the anticommutation rules generate phase factors that 
could make the weight of a contour depend on the presence of other 
contours far away. This would amount to a highly nonlocal interaction 
between contours, absolutely incompatible with a treatment based on 
cluster expansions. 

In this section we analyze this topic in detail. To prove the factoriza- 
tion property it is enough to consider an arbitrary periodic space-time sur- 
lace Y that can be divided into two (time-periodic) components, denoted 
by ~B and ~c, such that either they are mutually external or one is totally 
contained in a connected part of the interior of the other one. Each compo- 
nent is characterized by a well-defined exterior ground-state configuration 
which is the same for both of them if they are mutually external, but could 
be different otherwise. Each component can be made up of several con- 
tours. To each of Y, fiB, and ~c is associated a weight given by (3.41). We 
need to show that the weight for ]c factorizes: 

w(it) = w((~B) W((c) (4.1) 

By iteration of the argument we obtain the factorization into the weights 
of the individual contours. 

The weights (3.41) are a product of two factors 

w(T) = wq(T) wet(Y) (4.2) 

where the "quantum" factor w q corresponds to the action of quantum 
bonds [square bracket in (3.41)] and the "classical" factor w c~ is the 
exponential term in (3.41). The factorization of the classical factor is not 
hard to see. It follows from the fact that each quantum interaction qsq 
affects a bond B; in only one component of it; hence at the end of each 
"time" interval r / on ly  the section of one of the components changes. This 
observation can be formalized, for instance, through the change of 
variables 

f, =#- ~ q; 
i=l 

f i =  r i - i  + f , , - l ,  2~<i~<n 

(4.3) 
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The times f~ correspond to "jumping times," that is, the actual times of the 
quantum jumps, while the original r~ are the time intervals between quan- 
tum jumps. Each jumping time f~ is associated with only one component. 
Therefore the exponential factor reduces to a product of two factors, one 
involving the sections and jumping times of Ca and the other a similar 
factor for ~'c. [Of course, E(Fi ( ]c ) )=E(Fi (~s ) )+E(Fi (~c ) ) .  ] Undoing the 
change of variables (4.3), one restores the original expression (3.41) for 
each of the exponential weights. 

Let us now turn to the crucial issue of the factorization of the 
quantum part wq of the weight. 

4.2. Factorization of the Quantum Part of the Weights 

The factorization is immediate for bosons because in this case the 
phase 0~ in (2.30) and (2.31) is zero. The situation for particles with other 
statistics is more complicated because the action of each �9 q, gives rise to 
a phase that depends on the other contours present. However, in the case 
of fermions, the weights factorize because the interactions are assumed to 
involve only monomials of even degree in the fermionic creation and 
annihilation operators. We now explain the argument. 

In the following discussion we restrict our considerations to a f inite 
volume A x [0, fl] where the whole surface ]c is assumed to be strictly 
contained. The component (B is uniquely determined by an initial ("time- 
zero") section FoB and a sequence of operators o q  ..... oq,. The section FoB 
is the initial section of the space-time configuration having (s  as the only 
surface. If ~'s is a short contour, this initial section FoB may simply be equal 
to the exterior ground state. The weight for the component (n is then 

wq(~) = l~I <F;I 0~, It,_,> 
i = 1  

= <Fo.I O}. . . .  O}, IFo.> (4.4) 

The second line follows from the fact that each F; is uniquely defined by 
the relation IFi> :=O}, IFi_]>, 1 <i~<n; Fo=FoB (= F,,). 

The component ~c and the weight wq(~c) are defined in an analogous 
fashion, and the total surface ~F is defined by an initial section F0o and a 
sequence of operators (/'_D,q ,'", oqo,,.,,,, which is a uniquely determined per- 
mutation of the sequence �9 q, .... oq,,, Oq_c; ..... Oqc_,, ,. Its weight wq(] c) is 
defined also by (4.4) with the obvious changes. 

Let us first discuss the computation of the weight of a single compo- 
nent (~. It is notationally convenient to assume that its exterior configura- 
tion s, is precisely the true vacuum 10>. This does not lead to any loss of 
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generality because we can always take as generators of the algebra of 
operators the redefined destruction operators 

~c,.~ if n.,.~ Is,,) = 0  (4.5) 
e''" = (c.,.* if n.,.~ Is,,> = 1 

In terms of this vacuum [0), the expression of a component (B takes 
a very simple form. To obtain it, we observe that 

<Gnl o ~  . . . o k ,  leon> = <Ol c ~ 0 , o ~  . . .  o q r  IO> (4.6) _ _ fll "-" F 0 e  

where C*oB is a product of creation operators that create the section Foe.  
The product 

_ qsq F *  An :-~Cr0B~q,, ' ' '  _z]'~r0n (4.7) 

is a monomial in creation and destruction operators that can be combined 
into n u m b e r  operators, because of the required periodicity, 

AB 10) = wq(~n)10) (4.8) 

of the resulting surface. The factorization of weights is a consequence of the 
fact that this combination can be made in a well-defined fashion which is 
not affected by the presence of other (compatible) components. 

We choose the following procedure, which we refer to as c o n t o u r  

col lapshTg.  Consider the string of operators appearing in the product A s. 
For brevity we shall refer to each appearance of a destruction or creation 
operator supported in a pair (x, a) as an o c c u r r e n c e  of (x, a). We denote 
by ~(AB) ("shadow" of AB) the set of pairs (x, a) occurring in AB. We 
start with the leftmost operator in the product A B, (4.7). In order to yield 
a nonzero contribution this has to be a destruction operator with support 
in some pair (x, o-), i.e., c,.,. We now more this operator through the 
operators present to its right (i.e., downward in time), using the anti- 
commutation relations, until we encounter the next occurrence of the pair 
(x, a) in the product (4.7). This is necessarily a creation operator, c,.~,* since 
otherwise the successive actions of these two operators would yield zero. 
Hence we obtain a factor 

Cx, C*a = 1 -n , . a  (4.9) 

times a phase e!,-~(~s). The latter arises due to the anticommutation of the 
initial e,.~ with intermediate operators. All the operators which appear to 
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the left of this factor are not supported in (x, a) and hence we can move 
this factor to the leftmost end of the string to obtain 

A s  !1) = e ~ . . ( ( . ) ( 1  - -  n , . . )  .g.s (4.10) 

where ,g-n satisfies 

/~ks 10> = C[x)al(~S)wq(~B)I0> (4.11) 

and has two fewer occurrences of (x, a). 
Next, we repeat the above procedure for the string of operators 

defining .g-s and continue pulling out, in the same way, successive phases 
and factors 1 - n,.,. Once all occurrences of (x, a) have been dealt with, we 
obtain a product of factors ( 1 - n . , . ~ ) k = l - n , . ~  and an overall phase 
e.,.~((s), so that 

As = ex,,(~n)( I - n.~.~) -~s (4.12) 

where -~s satisfies 

AB 10> = E,.(~B)wq(~s) 10> (4.13) 

and has no occurrence of the pair (x, a): 5e(.g, B) = 5e(As)\{ (x, a)}. 
We then repeat the whole procedure for .~B. At the end, once all the 

pairs (x, a) in 5P(AB) have been exhausted, one obtains that the whole of 
A B has "collapsed" into factors 1 -  n,.~ times a numerical factor. A simple 
replacement in (4.8) shows that this factors must equal wq((s). That is, 

A B =  wq((B) ]'-[ (1 - -n ,~)  (4.14) 
(x,a) ~ .~'(r 

We are now ready to prove the factorization of weights. 

T h e o r e m  4.1. Let Y be a family of space-time contours and let It 
be decomposed into two subfamilies of contours (e  and ( c  such that either 
the subfamilies are mutually external or one is totally contained in a 
connected part of the interior of the other one. Then 

w"(Y) = wq((B) wq((c) (4.15) 

Proof. To avoid notational complications, we take 10) as the 
vacuum between the components ( s  and (c .  We further assume that it is 
the exterior configuration of ( s  (that is, if there is an interior component, 
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we call it (B)- Nevertheless, we observe that we can also write ( c  via an 
operator 

Ac :=Croc ~q, ...~qc_~ C*oc (4.16) 

such that 

Ac 10> = wq((~C) 10> (4.17) 

If ~B is contained in the interior of ~c, the product of creation operators 
* also creates the relevant ground-state configuration outside (c- Croc 

We shall use the following two consequences of the compatibility of 
the two components ~B and ~c: 

(C1) The monomials C*o~ and C*0c. have disjoint support, so 

IFoo) =eCrosCr,,c 10> (4.18) 

where e is a phase factor. Hence, 

with 

wq(r) = <01 A~ I0> (4.19) 

A o :=Cr, ,cCro,~ q ...... - . . ~ q  C*,,+C*0c (4.20) 

(C2) As the component (8 is surrounded by vacuum, the occurrence 
of a creation operator e*o- in factor of A8 implies that the pair (x, a) 
becomes, or continues to be, part of the support of ~B at least until there 
is a further occurrence of a destruction operator c,.~. In particular, as the 
surfaces corresponding to r and ~c are nonintersecting, we have the 
lbllowing property: 

Between an occurrence of c,.~ in factors of AB and the preceding 
(i.e., immediately to the right) occurrence of c.*~ in factors of AB, (4.21) 
there cannot be an occurrence of (x, a) in factors of A c 

Moreover, as the whole structure Y is periodic, we have that each 
occurrence of c~.,. in AD must be preceded by an occurrence of e.,.,~*. 
Combining this observation with (C2) we obtain the last property needed: 

(C3) Between an occurrence of e,.* in factors of AB and the 
immediately preceding occurrence of c,., in factors of AB, there is an even 
number of occurrences of (x, a) in factors of Ac. Of course, these occur- 
rences correspond to alternating creations and destructions. The same 
property holds after the last occurrence of c,.,~ in factors of AB and before 
the first occurrence of e,.* in factors of AB. 
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From (C1)-(C3) we conclude that the "collapse" of AB gives exactly 
the same factor as in the absence of the component (c .  Indeed, the last 
occurrence of a pair (x, a) in factors o AB is a destruction operator, which 
we can displace up to the previous occurrence to produce a factor 1 -  n,.~. 
Between these two occurrences there is 17o occurrence of (x, a) in factors of 
Ac because of (C2). Hence c,-a commutes with all the operators ~qc, 
encountered during displacement (recall that such operators are monomials 
of even degree). Thus, the phase acquired during this dosplacement only 
depends on the operators in AB and hence it is the same phase e!,.~((s) 
obtained when collapsing the component (B in the presence of vacuum. 
Moreover, by (C3) the operators in Ao located to the left of the factor 
1 -n, .~,  obtained in the above manner, involve an even number of creation 
and destruction operators supported in (x, a). Therefore, we can freely 
move this factor 1 -  n,.~ all the way to the left to obtain 

(4.22) 

where -g-D has two fewer occurrences of (x, a) in factors of An but otherwise 
satisfies (C1)-(C3). Iterating this process, we collapse A 8 exactly as done 
in (4.10)-(4.14). We obtain 

AD= wq(~8) I-[ (1 -- n.,.~) A c (4.23) 
( x , a )  ~ ,~'~ CB) 

Combining this expression with (4.19) and (4.17), we get the desired 
factorization (4.15). I 

The situation is more complicated for anyons. In particular, for d = 2, 
it is necessary to demand that the component formed by the qsq's is not 
only disjoint, but is also not linked with the one formed by the action of 
the ~q ' s  For the sake of generality and in preparation for further studies, _C, " 

we shall consider this extra condition of nonlinking as part of our defini- 
tion of independent contours. 

5. CONTOUR EXPANSIONS 

5.1. Contour Expansion for the Partition Functions 

To construct the partition function corresponding to a boundary 
conditions Sp [defined in (3.26)], contours are added by summing over the 
"spatial" degrees of freedom and integrating over the "times" axis. We shall 
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denote this sum-integral operation by a combined symbol: if g is a com- 
plex-valued function on quantum contours, then 

~g(r  := 1 + ~ ~'. ~' I[(i), (ii)] 
( n ~ l  (B_t,...,Bn) IFO.....Fnl 

x drl..,  dr,,I fl~ "C i g(() 
i = l  

(5.1) 

We sum each _B; over all quantum bonds, and each F f  over all possible 
families of compatible classical contours (with exterior p-contours). By 
I[E] we mean the indicator function of the event E; in particular, 
l[(i) ,  (ii)] in (5.1) vanishes unless the sections Fi satisfy the following 
conditions (see Definition 3.3): 

(i) O<~l[Fil-lFi_lll<~g(Bi). 
(ii) F~' = Fg. 

We are interested in the "sums" corresponding to partition functions 
for piecewise-cylindrical finite regions V in d +  1 dimensions. For such 
regions we define the volume I VI to be the sum of the volume of the con- 
stituent cylindrical regions, where, however, in consistency with our choice 
of units for areas in Z a, the areas of the bases of the cylinders are measured 
in units of the sampling plaquette. Similarly, we obtain the area of the 
internal boundaries ~ V by adding the surface areas of these piecewise-cylin- 
drical regions to the area of the bases. Again, we use sampling-plaquette 
units in Z a. 

From now on, the symbol V will indicate a piecewise-cylindrical region 
of Zax [0, fl]. The partition function for such a region V, with a spatial 
boundary condition sp, is (formally) defined by the series 

-~,( V) = exp [ -- Ive.,-(Sp) ] 

x 1,,~=~. [gw((k)][,e~=exp{--IL[e.,.(s,,,--e,.(Sp)]}l (5.2) 
compatible 

where the exterior contours of each compatible family are p-contours. The 
weights w are given by expression (3.41), and the region 1~ is obtained from 
V by adding to each spatial section the plaquettes touching V, i.e., 

r (5.3) 
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where A is as defined in (3.20). The region L,, = L,,( { ( ,} )  consists of the set 
of points in V that are either u-correct or that belong to a u-quantum 
contour. We shall call such a series a contour expansion of the partition 
function Zp(V). For  V of the form A x [0, fl] we recover expressions (3.26). 
We shall use the letter V for space-time regions, A for spatial ones, and the 
abbreviation , . . ,~p(A ) :---- 3p(A x [0, fl] ). 

We shall be interested in the quantity 

re(V) := ~V~ log .~p(V) (5.4) 

whenever the series (5.2) converges to a nonzero value, and in the limit 

f : =  lim fp(V) (5.5) 
V : Zd x [0,fl] 

whenever it exists. 
Note that we have used the same symbols in the above definitions as 

those used in (2.49) and (2.50) to denote the free energy densities. This is 
in anticipation of the fact that, in the regimes analyzed in this paper, both 
definitions agree for regions of the form V= A x [0, fl]. 

5.2. Contour Expansion for the Quantum Expectations 

An expansion for the expectations 

Tr;f Ae -a" . '  ._  ~,~(A) (5.6) 
Tr'~e -pn,' ' -  .E:(A) 

can be constructed by expanding the numerator and the denominator. For  
the latter we have the previously developed expansion, (5.2). A similar 
expansion can be obtained for the numerator by proceeding as follows: We 
expand A exp( - f lHA)  with the help of the iterated-Duhamel formula 
(3.24) and perform steps (a)-(d) of Section 3.2. Let us assume, without loss 
of generality, that A - AD s dD for some finite D c 7: d. Moreover, for fer- 
mions, we can also assume that A is an even monomial in creation and 
annihilation operators. Therefore we can view the operator A as giving rise 
to an extra "quantum bond" _D. We then obtain an expansion for N2(A) 
which is exactly of the same form (3.31), but where the terms of the sum 
are labeled by sequences of the form 

Y~ = (Fg, B, ,  Ff ,  r,  ..... B,,, FT,, r,,, D, Fg) (5.7) 
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with weights 

p p P w(r~) = ( rg l  A I F , , ) ( r . I - 0 } =  I F , , _ , ) - - - < e l l - o ~ ,  leg> 

xexp[-@- y v,)E(Fg)] exp[-r,E(Ff)]...exp[-~.E(F,)] 
(5.8) 

Note that the factor (Fgl A IF~) plays a role analogous to (FgL-- 
F p _ _ oq,,+, I ,,), with B,,+~ =D. 

To obtain a contour expansion, we must exhibit factorization of the 
expansion for SA(A) over the components of YP. For bosons the weights 
factorize as before. For fermions, too, a factorization of the weights can be 
exhibited if we use the following manipulations: We group into a single 
entity all the components of ~ ,  whose sections at "time" fl intersect the set 
_D. In this way, we obtain a special component r corresponding to the 
action of A. We shall refer to (A as the quantum contour associated with 
A. It is defined by a sequence of the form (5.7) and has a weight given by 
(5.8). An example of such a contour is given in Fig. 7. 

All the other components of Y~ are quantum contours defined as in 
the previous section, i.e., their weights do not involve the operator A. The 
factorization discussed in Section 4 applies. The weight w(Y~) can hence be 
written as a product 

(5.9) 

0 - - - -  

Fig. 7. A q u a n t u m  con tou r  (A associated with a local  observab le  A e d o ,  where  D is a finite 

subset  of  the lattice. 

822/84/3-4-12 
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where 

Datta e t  al.  

( k~ ffk) U ~A = ]r (5.10) 

Factorization implies that we can expand the numerator of the expec- 
tations (5.6) in the form 

[ 1 ~ p ( F ' ) = e x p - - I  ex(Sp) ~*w(~n) 
P 

• 

compatible 

• 1[ { (n,  { (k } } compatible; exterior contours are p-contours ] 

(5.11) 

The starred sum-integral refers to an expression of the form (5.1), but 
where in condition (ii) we demand 

P A IF~) oc IFf,+l ) with F,,+1 = F o  p (5.12) 

The weights W(~n) satisfy a Peierls bound: 

Iw(G,)[ ~ < 21B('~*'l exp[ - J  I(AI• IIAII (5.13) 

where 

( " ) I~AII:=IFol p - - ~  r,. + l r l l r l + - - - + r , , I r ,  I (5.14) 
i = 1  

IB(G,)I :=g(B,) + ... +g(B,,) (5.15) 

and II-II denotes the usual operator norm. 

6. CLUSTER E X P A N S I O N  FOR THE S Y M M E T R I C  OR THE 
S I N G L E - P H A S E  REGIME 

6.1. The Result 

Having formulated a convenient low-temperature expansion in terms 
of contours, we must address the task of proving its convergence for some 
open set of values of fl and 2. The main mathematical complications arise 
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from the requirement of compatibility of the contours in expression (5.2). 
Compatibility is a highly nonlocal condition (two arbitrarily far-away 
nested contours can be rendered incompatible by a mismatch between the 
labels of their exterior and interior configurations). 

In this section we analyze the simpler case in which compatibility 
reduces to nonlinking (or nonintersection), i.e., when the labels of the con- 
figurations outside the support of the contours become irrelevant. The 
results of this section form the basis for the full-fldged theory which is to 
be discussed in Section 7. We are concerned with an expansion of the form 

Sp(V)= ~ I~w((p) (6.1) 

nonlinked 

with weights as in (3.41) satisfying the quantum Peierls condition (3.42). 
This type of expansion is obtained when there is a single ground state for 
an open set of parameters p, or, more generally, for values of/l  for which 
the ground states are related in a way such that the removal of any contour 
of a compatible family leads to another compatible family of contours. 
These have been among the first situations treated by contour argu- 
ments. 19'151 Among our examples of Section 2.3, this symmetric situation 
occurs at the coexistence point h stagg = 0  for the Fisher antiferromagnet, 
with K =  0 and Ihl < 2 (Fig. 2b), and at the coexistence point Pstagg = 0 for 
its lattice-gas transcription (i.e., Example 2), with K =  0 and p < 2 (Fig. 3b). 

There is a well-established technology to analyze (the log of) "volume- 
exclusion" expansions like (6.1), namely the method of cluster-expansion 
(ref. 31, Chapter4). The method involves some standard combinatorics 
(reviewed in Section 6.2 below) and a bound on the sum of the weights of 
contours containing a fixed point. 

Let 

1 
fp = - lim log S~(V) (6.2) 

In Sections 6.4 and 6.5 we shall prove the following key result. 

T h e o r e m  6.1. Under the hypotheses described above, there exist 
strictly positive constants J and eo such that, for each fl and 2 in the region 

max(e -pJ, 2) <eo (6.3) 

the cluster expansion (6.1) converges absolutely for all piecewise-cylindrical 
regions V. The free-energy density fr  exists in this region and is jointly 
analytic in exp(-flY) and 2. Moreover, it satisfies 

fp = O(eo) (6.4) 
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and 

II Wl f~ + log 3p( v)[ ~ [OF[ O(eo) (6.5) 

Corollary 6.2. There exists a positive constant go such that, in the 
region max(exp(-flY), 2) < go, the limit 

3~'(A) 
lim =: (A)p;. (6.6) 

exists and is jointly analytic as a function of e -/J and 2, for any local 
operator A. Moreover, 

I<A>~'a- <spl A Isp>l ~< IIAII IDI O(eo) (6.7) 

for any operator A ~ do .  

This proves that the phase diagrams of Figs. 2b and 3b remain 
undeformed at low temperatures and under small quantum perturbations. 

Remarks. (1) The constants e0 and go depend on the choice of the 
parameter p. 

(2) In the arguments that follows we shall impose conditions of the 
form "J  sufficiently large" and "2 sufficiently small." As long as the tem- 
perature is sufficiently low and 2 is sufficiently small, we can choose J large 
enough simply by a rescaling. This is because the Hamiltonian HA, which 
depends on the parameters J and 2, appears in the partition function in the 
form flHA, which we can write as 

R 
f l (H~+VA) ~ , c, = (fl HA +ffV+, ) 

P 
(6.8) 

Upon rescaling, f l ' J~  J, we see that a large fl' leads to a large J. The 
product fl'2, which is the rescaled perturbation parameter, is small if ). is 
sufficiently small. Once fl' is fixed, we adjust fl such that fl/fl' is sufficiently 
large. 

6.2. Combinator ics of the Cluster Expansion 

We summarize some results on cluster expansions, adapted to the case 
where contours are discrete in all dimensions, except one. We can extend 
the conventional proofs for the convergence of cluster expansions 
(applicable when the compatibility relation corresponds to nonintersection) 
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to the more general situation when the contours are either disjoint or non- 
linked. The reader may consult, for instance, refs. 32, 7, and 26 for the 
usual proofs, and ref. 20 for a different, in some sense more efficient, 
approach, which, however, we do not adopt here. 

We use the notation ~t~ (see ref. 20) to denote the condition that 
supp ( either intersects or is linked with supp ~'. In the following, we shall 
use the term linking to refer to both intersection and linking. A cluster is 
a finite family {~, ..... (,} of contours that cannot be decomposed into two 
nonlinked subfamilies. To simplify our notation we have omitted the super- 
scripts of the contours ( referring to their exterior configurations. 

The following theorem gives the condition for the convergence of a 
cluster expansion. 

Theorem 6.3. If 

C : = s u p  1- ~ Iw(OI e '~' <1 (6.9) 

then the expansion (6.1) is absolutely convergent and log Z(V) has an 
absolutely convergent expansion of the form 

log•(V)= ~ ~ ... wT({(~ ..... CN}) 
N>~I ( i c l  ~ ( N c l  2 

(6.10) 

(the cluster expansion), where w T is a function on families of contours with 
the properties that 

wT({r if {(, .... (,v} is not a cluster (6.11) 

and satisfying the bound 

sup 
x, ,  {~J- . . , (M ~ ( x , t )  

IwT((, .... r 

I r  w - . .  u r  

where 0c N is a constant of the order of 

~<~N (6.12) 

N 

sup I-I Iw(C,)l 
i = l  

the supremum being taken over all sets of N contours (not necessarily com- 
patible). 
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[The notation {(1 ..... (N} ~(x, t) means that (x, t) belongs to the 
union of the support of the quantum contours (1 .... (N-] From this and the 
periodicity of the contour ensemble one obtains an expression for the quan- 
tity f defined in (5.5). 

Corollary 6.4. If 

l _ z  
C := sup--Sz-_ ~ [w(()l elr l 

I l l  ~,: 
(6.13) 

then the quantity f defined in (5.5) emsts, and is given by 

f =  - Y" I WI Z I wT((J'-"'" U~UI~N) 
N ~ I ~x,O) ~ ~'11" { Cl ,Ill,ON} ~ {x/O) ' ( l w 

(6.14) 

where W is a fundamental cell of the configuration and ~' is a constant of 
order C. Moreover, 

[ I VI f+log ~(V)l ~10Vl o(c) (6.15) 

The contour ensembles we are considering in this paper are all 
periodic, rather than just translation invariant. That is why in (6.12) we 
have taken a supremum over sites and in (6.14) we have summed over a 
fundamental cell W of the configuration. Nevertheless, the relevant 
estimates will be done majorizing the contour weights via the Peierls condi- 
tion (3.42). This majorizing ensemble is then translation invariant, and 
hence this supremum over sites is superfluous in the key estimate that 
follows. 

The limit f can be interpreted as a free energy of the ensemble of 
contours (6,1). The coefficient on the RHS of (6.15) can be interpreted 
as a bound on a surface-tension term representing a finite-volume 
correction. 

6.3. The Key Estimate 

In view of Corollary 6.4 and the freedom of rescaling discussed at the 
end of Section 6.1, we see that the following lemma is the key step needed 
to prove Theorem 6.1. 
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L a m i n a  6.5. There exist 20 > 0 and flo < ~ such that, for 2 ~< 20 and 

P> Po, 

2 w(~ exp[ - J  Ill l ]  ~ O(e -aJ/2) + O(2) 
supp ff ~ 10, O) 

(6.16) 

Proof.  We use the fact that the integrand on the LHS of (6.16) 
depends on the sections Fi and the quantum bonds _B i only through their 
sizes, to write it as a sum of contributions of "entropy" and "energy" 
factors. We first decompose the LHS as 

2bB~C~l e x p [ _ J  l~l• = SO + S> o 

supp ~ ~ (0,0)  

(6.17) 

where S o is the contribution due to contours without transition (perfectly 
cylindrical contours) and S >~ is the rest. The bound on S o is exactly as in 
the usual Peierls argument: 

S O ~< )-' card{F: [FI = / ,  supp F a  0} e -pJI 
/ />1 

= O(e-PJ) (6.18) 

Regarding S >~ we have 

S>O <~ ~ ~_, )j ,  + ... +1, ~ N ( j , ,  l, ..... j,,, l,,) 
tl>~ 1 (Jl,...,Jn) (In,'",ln) 

I l i - - l i -  II <<-Ji [lo EIn)  

i = 1  

+ (6.19) 

where 

N ( j , ,  l, ..... j , , ,  l,,) := card{(F  o ..... F,,): (a) and (b) below} (6.20) 

(a) IF;I = ll; Fo = F,,. 

(b) There exists a sequence (_B~ ..... _B,,) of quantum bonds with 
g(Bi)  =j~ such that there is a contour ~ formed by the sections F; and the 
bonds _B;, with supp ~ (0, 0). Conditions necessary for this property to be 
satisfied are: 
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(b.1) F; is obtained from F,._~ by acting with some ~ql, with 
g(Bi)=Ji, on ]l"i_l). 

(b.2) There exists one section F; or one quantum bond _B; such that 
0 ~ F ;  or O~_B;. 

We can distinguish a contribution due to "entropy" [the factor 
N(j~,...,/,,)] and another due to "energy" (the exponential and the powers 
of 2). To prove (6.16), we must show that "energy" overwhelms "entropy." 

The two contributions on the RHS of (6.16) arise from two different 
types of quantum contours, namely the long contours and the short con- 
tours defined in Section 3.3. A long contour extends all the way from "time" 
zero to fl, i.e., none of the sections F; are empty. We shall denote the set of 
such contours by QI. A short contour has a "time"-height strictly smaller 
than ft. It appears and disappears under the action of the quantum inter- 
actions r .... ~q,,. Hence, under the action of one of these n interactions, 
the section size of the contour reduces to zero, i.e., there is one (and only 
one) value o f / ( 1  <.%i<~n) for which 

~:F;_,~--~F;  with IF ;_~I#0  and I/';1=0 

The set of short contours will be denoted by Qs. 

B o u n d  fo r  Long C o n t o u r s .  We start with the entropy bound, that 
is, the bound on N(j~, l~ ..... j,,, l,). By condition (b.2) above, 

N(lo ..... 1.) <~ (/max + Jmax) N(J~, II ..... j . ,  l.) (6.21) 

where Im.x =max;  l;, Jm.x = max/j; ,  and At(j1, Ii ..... j . ,  I,,) is the number of 
"pinned" contours, that is, contours with the given section and quantum 
bond sizes for which (0, 0) is the first point (e.g., in lexicographic order) 
of its support (0~F; ,  or 0~B;). To evaluate ~ we imagine that we 
"construct" the quantum contour by starting from a section with minimal 
s i z e  /rain : 

/V(j,, l, ..... j,,, 1,,) 

Z JV'F__I-(Jimin+l,limi,+l ..... Jimin_llimi._l,Jimin) (6.22) 
/"~ CC( Imin, J I ,...,Jn) 

Here, imin satisfies l;,,~. = mini I; := l,,~,, 

CC(/, j~ ..... .L,) 

:-- {/': If'l = L and F i s  a section of a quantum contour 

with n transitions given by the actions of q~q, ,..., q)q} 
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and 

~'V'ro~ r , ( j ]  , Ii ..... J , , -  ] , l , , -  ] , J,,) 

:= number of ways of choosing sections 1"] ..... F , _  l of 

areas II ,..., l,,_ 1 and quantum bonds _B, ,..., _B,, of areas Jl ..... J,, 

such that two consecutive sections F,. a n d / ' i - ,  of the sequence 

Fo, Fl ..... / ' ,  _ ~, F,, are obtained from each other by acting with g>q 

By induction one can see that 

~ U r o ~ r , , ( j l ,  Ii ..... J , , - I ,  l , , - I , J , , ) < ( a 2 d )  " f i  (li+Ji) Ji C,~ (6.23) 
i=1 

where c a is a dimension-dependent constant (the one for the K6nigsberg 
bridge lemma). The proof  of this fact is presented at the end of this sub- 
section. Thus 

/~ ' ( J l  , l!  ..... j,,, l,,) 

~<card(CC(lmi,,jl ..... j,,))(aZd) '' f i  (li+Ji) j i C,~ (6.24) 
i = l  

The bound on card(CC(lm~,, j~ ..... j,,)) must take care of the fact that the 
section of area /rain need not be connected [see discussion following 
(3.36)], but its components cannot be too dispersed. More precisely, 
property (3.36) implies that for each lmi . there is a c o n n e c t e d  set formed by 
a number of plaquettes ranging from lmi, to lmin + J l  + " '  +J,," There- 
fore (by the K6nigsberg bridge lemma), there exists a constant Cd>>. 1, 
depending only on the spatial dimension, such that 

card(CC(lmin, j I .... j , , ) )  ~ C  d * / m i n - - . a  t_ . . .  + C  a-/rain +jl  + "" +in 

/mi. +k + "'" +J,, (6.25) < . ( j ,  + . . .  + j , +  I ) c  d 

Substituting (6.21), (6.24), and (6.25) in (6.19), we obtain the bound 

S>O (a2a),, Q, ~ ~ ~. ( J ' +  "'" + J , , +  1 ) 2 k + + J "  
n>~ 1 (jl.. . ,jn):Ji>~ 1 

X ~ ( /max + Jmax)  C~ mi" 
(It ,..., In): li>~ I 

l l i - - l i _ l l  <~ji(lom--ln) 

x ( l i + J i ) j i ( c e )  2j~ R ( l l  ..... l,,) (6.26) 
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with 

R(ll ..... 1 , ) :=  dtl ..- dr, I fl>~i~=lri 

) 1 x e x p - J  l o - ~  % + l l r l + ' ' "  +/,,r,, (6.27) 
k \ i = l  

In order to obtain a bound on this last integral, the energy bound, we 
proceed as follows: We use the bound 

e-J~li ~ e-J~U.,~,/2 e-J~ai/2 (6.28) 

for 0r ..... r,,, ( f l -  S';'=] r/), to extract an overall factor exp(-f lJ lmi , /2)  
outside the integral on the RHS of (6.27). The remaining integral is the 
same as the original one, but with J replaced by J/2. By neglecting the 
indicator function and the term proportional to I 0 in the exponent and 
extending the limits of integration to infinity, one obtains 

R(I~ ..... ")<~(--~l) "'" (--~,,) e-/Js'"'~ (6.29) 

which, by (6.26), implies that 

S~,~ < ~ ~. ( j r +  ... + j , , +  1 ) 2 h + + J "  
n>~ 1 (jl...,jn):ji>~ 1 

X Z (/max + J m a x ) ( C d  e - I~s /2) lmi"  

(ll,...,li>~ I 
lli-6-d <<-j i{ lo~h,) 

X [ f i  ( l + ji) Ji ( Cd) 2ji] (6.30) 
i=1 

The sum over the 1;, 1 ~< i ~< n, can be written purely in terms of Imp, (>/I )  
and j] ..... j,,. Indeed, for each /;, there are only 2j ;+ 1 possible values for 
l,-+1. Hence, once /min is given, the sum over the remaining l;'s yields an 
extra factor I-I; (2j ;+ 1). One now notes that the maximum size /max of a 
section of the contour satisfies the bound 

I . . . .  ~ lmi. + j~ + "'" + j,, (6.31 ) 

This is because the section of "area" lm. X is obtained from the section of 
"area" Imi. by the action of at most  n quantum interactions ~ q  ..... ~q,,, the 
latter corresponding to quantum bonds _B I ..... _B. of sizes j~ ..... j , , .  Also, 

J .... ~<j, + ... +j , ,  (6.32) 
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Thus 

n~ I 

X 

( j , + . . .  + j , , + l )  
( j l  ,..., j , ,):  j i  >~ 1 

i = |  

x ~ ( l m i , + 2 j , +  "'" +2j , , ) (cae-PJ /a)  I'''" 
/rain/> 1 

= O(e -/m2)) (6.33) 

B o u n d  for the  Short  Contours.  There are two types of short 
contours. There is a "collapsed" type, corresponding to actions of all the 
45q that do not alter the configuration. By the exponential bound (2.62), 
the contribution of these fluctuations to the expansion (6.16) is simply 
given by 

c ~' 2tal<~c ~ (ca2)J<~O(2)  (6.34) 
B ~  0 j>~ 1 

The remaining short contours have a finite extension in the "time" 
direction. We shall assume, without loss of generality, that the quantum 
interaction c/,q reduces the section size of the contour to zero, i.e., we 
assume that F~ = ~ and hence l~ =0.  

The entropy bound can be obtained in a way similar to that for long 
contours, but with the following modifications: 

�9 /mi, is the minimum of the "areas" of the nonempO~ sections, 12 ..... l,, 
( =1o)" 

�9 The "area" l~ on the RHS of (6.24) is zero. 

�9 The entire contour (which includes the sections of areas lmi, and 
/ . . . .  ) corresponds to the actions of ~q, ..... q~q. 

Hence 

which implies tfaat 

1 . . . .  j . . . .  <~Jl + "'" +J,,  (6.35) 

1 .. . .  + J m , x ~ 2 ( j ,  + ... +j , , )  (6.36) 

Moreover, in place of the bound (6.25), we have that 

card(CC(lmi,, j]  ..... J,,))<~(Jl + "'" +J, , )cIJ '+ " +J") (6.37) 
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With the above modifications, we obtain that 

N ( j i  , O, J2, 12 ..... j , , ,  l . )  

~<2(ji + "" + j , , ) 2 C ~ ) + + J " ( a 2 d ) "  f i  (li-t-ji) j i c  j) (6.38) 
i = l  

In calculating the energy bound, we make use of the inequality 

e -  g~' <~ e - g/2 e - J~1'/2 for i:/: 1 

Proceeding as in the case of long contours, we obtain the bound 

(:) (:)So R(O, l 2 ..... 1,,) <~ ~ . . .  ~ dr,  e - 'p-~ ' 'J /2  

2 2 
~< (J~2) ' ' " ( ~ , , ) ( J )  (6.39, 

where the last inequality results from extending the limit of integration to 
infinity. Hence 

SO, <~>o 0 ( 2 ) +  ~ n ~ 2( j  I + . . .  +j.)-" " 
n>~ 2 ( j l , . . . .  j ,,): j l>~ 1 

f;, ] " " " " 2 k + + L  x (1 +2j i ) -J i (Cd)  u' 
i 

~< 0(2) + 0(22) I (6.40) 

P r o o f  o f  the Claim (6 .23) .  The proof follows by induction in n. The 
induction step is carried out as follows: 

~'Vvo ~ r,,(J, , Ii ..... j , ,_  ,,  1,,_ ,, j,,) 

J l r ro~r ,_ l (J l , l  I ..... j , , _ 2 , 1 , , _ 2 , j , , _  l ) (6.41) 
F n -  I e C C / n  - i . i n ( F n )  

where 

CC/,_,. j,,(l",,):= { F: I FI = l,,_ ~ and F differs from F ,  through the 

action of some ~ , ,  with g(B,,)  =j,,} 
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By the inductive hypothesis 

JVro ~ r,,(Jl ll ..... J , , -  1, In _ 1) 
n - -  1 

~card(CCt,,_~ ( F  ) ) ( a 2 d )  n - I  " "" .j, . . . . . .  1-I ( l i + j , ) j i c ~  (6.42) 

We have to consider two cases: 

(i) l,,_ I >/l,,. In this case, the bond B,, must intersect supp F,,_ ~. The 
number of such possibilities is bounded by the product of the number of 
sites in F,,_ 1 ( =  l , _  lad), the number of sites in B,,_ l (=J i - l ad ) ,  and the 
number of bonds _B,, with [B,, I =j, , .  The latter is less than or equal to c~' 
for some constant Ca depending on the dimension d. 

(ii) /,,_ i < l,,. In this case, B,, must intersect supp F,,. Hence we can 
use the preceding argument with F,,_ 1 replaced by F,,. 

Therefore, in both cases, 

card(CCt,,_ ,./,,( F,,) ) <~ ( ad) 2 max(l,, - 1, l,,) j , ,c  d "  ]" 

<~ aZd( l,, + j,,) j,,cJ2 

where we have used that I,,_ 1<.. 1,, +j , ,  because of (3.35). | 

(6.43) 

6.4. Convergence of the Expansion for the Free Energy 

Estimate (6.16) proves (6.13) and hence Theorem 6.1 for noninter- 
secting (as opposed to nonlinked) contours. Expression (6.14) shows that 
the free energy is analytic in exp( - f l ] ) ,  2 on a region of C 2 of the form 

max( le-PZl, I~1) < ~o (6.44) 

We use tildes because J and 2 must be rescaled as in (6.8) in order to 
absorb the extra factor e ur in (6.13). A small additional argument is 
needed to establish a comparable bound when contours are also formed 
by components.whose supports are linked. The argument goes as follows: 
If a contour ~ winds around ~ so as to yield linking, then there must exist 
points (x, t) ~ ~ and (y, t) ~ "  such that IB(~)I/> 2 dist(x, y). Moreover, 
g(Bl )  + . . .  +g(B , , )  must exceed the number of plaquettes needed to turn 
around a single plaquette, which is a large dimension-dependent number. 
A safe lower bound is, for instance, J l +  "'" +j , ,>~16 (for the more 
demanding case d =  2). Hence 
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I ~ . . -  Iw(~)l elr < b"C)l elr 
t.t~ supp (~  [0, O) 

x E ~  d 
supp ~'~ [x, 01 

IBlC)l ~> max{2 distlx. 0), 16} 

: = C + C I  

Iw(OI e Ir 

(6.45) 

The arguments used in the proof of the key estimate also prove that 

supp Co(x, 0) 
IB(()I ~> max{2 dist(x, 0), 16} 

Iw(C)l elr < 0 ( 2  . . . . .  {distlx, 0), 16}) (6.46) 

and hence 

C 1 ~ ~ 0 ( 2  . . . . .  {distlx. 0), 16}) (6.47) 
x 

which is only a negligible correction to C. 
In some cases we shall restrict our attention to a smaller family ~ of 

contours and consider the partition function 

Zr  := ~ I~ w((k) (6.48) 
{(k} pairwise nonlinked k 

t~kc V 
(~.. E ."7 

Repeating the arguments of Sections 6.2 and 6.3, we obtain an analog of 
Theorem 6.1, but where the convergence parameter is 

c ~ = O ( L f )  + O ( L J )  (6.49) 

where L f f  [resp. LI~ ] is the lowest order term in the sum (6.33) [resp. 
(6.40)] for contours of the family ~ .  We already invoked this fact in 
(6.46). Another case, used in Section 7 below, is when J~ is the set of 
("large") contours with /rain + J l  + "'" +J, ,  > m. In this case we can replace 
the constant eo in (6.4) and (6.5) by (eo)"'. 

6.5. Stability of Phases in the Symmetric Regime 

Here we prove Corollary 6.2. Our proof is based on the original 
Peierls argument, but uses the cluster expansion technique to get around 
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the fact that weights may be negative and imaginary. We choose an observ- 
able A e ~'o. From the discussion of Section 5.2 we have that 

Sp(X) = w(~,,) U,,(CA) 

where 

(6.50) 

{'~kt = # k 

n o n l i n k e d  

(6.51) 

for V=A x [0, fl]. The quotient on the RHS of (6.51) is amenable to the 
cluster-expansion technology: The logarithm of the numerator produces 
clusters for which no contour is linked with CA, while the logarithm of the 
denominator produces all clusters, with no restrictions. The quotient 
corresponds to the clusters with at least one contour linked with CA. 
Hence, 

log UvC~A)= ~ 

and we have the bound 

wT(cI ..... ~N) (6.52) 

I uc,,(V)l ~expIIffAI O(eo)] 

uniformly in A, and, due to the Peierls bound (5.13), 

IW(4A) UV(4A)I <~ IIAII ~W~c,,)t exp[--.7 14A l z] 

(6.53) 

(6.54) 

again uniformly in A. We use the notation 2 = 2 exp O(e0) and J =  J -  0(%). 
As a consequence, expression (6.50) can be treated by cluster-expan- 

sion methods, as the key estimate (6.16) is valid. The "dominant" contribu- 
tion in (6.50) arises from terms for which CA corresponds to (svl A [sp> 
and has a support 

supp ~A = D 
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We obtain that 

~ ( A ) _  <spl A Is~) + S,(p, ~) + S2(L ~) (6.55) Z.(A) 

where S~(fl, 2) is the contribution of short contours which intersect the set 
D at the "time" fl, whereas S,_(fl, 2) is the contribution of long contours 
intersecting D at "time" ft. The key estimate given in Lemma 6.5 and the 
fact that all the components of CA must intersect some site in D imply that 
Sl(fl,  2) and S,_(fl, 2) are bounded by 

]DI-IIhl[ O(eo) 

The expression (6.55) and the above bound together prove Corollary 
6.2. They prove that the quotients 3~(A) /Zp(A)  are analytic functions of 
(exp(-flJ) ,  ~.)in a region 

max( [e-t~J[, I~1) < ~ (6.56) 

where g is a constant independent of V. Each term of these series converges 
to the corresponding term of the series (6.50) without the condition (A c 1~. 
In addition, the finite-volume series and this infinite-volume limit are 
majorized by the same absolutely convergent series. By dominated con- 
vergence, the limit A ~ Z a of the series is the series of the limits throughout 
the region (6.56), which therefore is also the region of analyticity of the 
limit. We conclude that the quantum expectations satisfy 

(A)/~= lim 3A(A) 

= <spl A Isp> + IDI" IIAII O(~o) (6.57) 

This proves Eq. (6.7). 

6.6. Di f ferent iabi l i ty  of the Expansion 

Let us reintroduce the parameters _p in the interaction and hence in the 
weights w and discuss the consequences of the smoothness hypothesis 
(HI.2) (Section 2.2). This hypothesis implies that the derivatives of the 
weights satisfy a Peierls condition analogous to the one obeyed by the 
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weights themselves, except for a factor proportional to I~[. This factor can 
be absorbed in a rescaling of J and 2; so we can assume that 

~ 1  <<, "21s~r (6.58) 

Therefore, from the preceding results, we conclude that the series formed 
by the derivatives of the weights converge uniformly in a small interval 
around each l je  (9 [and absolutely in exp(-flY) and 2]. This implies that 
the series for the partition function can be differentiated term by term, and 
thus it and its logarithm are differentiable functions of #. Using the cluster 
expansion, we obtain 

O • , .  log 3p( V)] ~< I VI O(eo) (6.59) 

and, writing Sp = exp(log ffp), 

o--~/ s,,( v) ~ I vI. Isp( V)l o(eo) (6.60) 

These observations will be useful in Section 7.3 below. 

7. P I R O G O V - S I N A I  THEORY FOR Q U A N T U M  
PE RTU R BATION S 

7.1. Overv iew.  The Initial Trick 

We now turn to the proof of the main Theorem 2.3 in the general 
(nonsymmetric) situation. This involves dealing with the contour expan- 
sions (5.2) [which we repeat in (7.1) below for the reader's convenience] 
with a nonlocal compatibility condition among contours (the matching of 
the labels of nested interiors and exteriors). Following the standard 
approach, going back to the original work of Pirogov and Sinai, ~28" 29~ the 
theory is constructed in two parts: First (Section 7.2 below), a criterion is 
established to determine the stable phases for a fixed interaction; second 
(Section 7.3), the stability of the phase diagram as a whole is determined. 
The parameters it play a role only in the second part (and hence will not 
be displayed in t-he first part). 

In our treatment, we closely follow the excellent presentation of Borgs 
and Imbrie. ~4~ Our proofs are basically a transcription of those in ref. 4, 

822/84/3-4-13 
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except for some small adaptations and simplifications. The starting point of 
our proof is the formal expression (5.2) for the partition functions Sp(V) 
and, more generally, the expressions (5.11) for SpA(V). For the convenience 
of the reader we repeat (5.2) here: 

x ~ [ k[-[W(~k)][ I~ exp{--fz,,[ex(s,)--e.,-(s:)]}l 
{qk} = p u =  1 

compat ib le  

(7.1) 

where the exterior contours of each compatible family are p-contours. Both 
quantities, the energies e.,.(s,,) and the weights w((), are complex valued, 
and the latter satisfy the quantum Peierls bound (3.42). 

We follow the procedure, introduced by Minlos and Sinai, (~-4"2sl to 
eliminate the inconvenient compatibility condition in (7.1). We first resum 
(7.1) (formally!) over the contours in the interior of the exterior contours, 

Yp(V) = exp [--fvex(Sp) 1 
P 

xlep,~r:~[w((P),l-I= S,,(Int,,((P))exp{~nt,,(~f.)e,.(Sp)}] (7.2) 

exterior  

and then multiply and divide the RHS by Sr(Int,(~P)) to obtain 

S:( V) exp [ f v e.,.( sp) ] 

I {f, }1 = ~ 1-[ W(~ p) 1--[ Sp(Int,,(~P))exp e.,.(sp) (7.3) 
{~p} = f / k "  u = 1 nt,,(r 

exterior 

with the new weights 

(7.4) 
S.(Int,,(~P)) 

W(~P)  1= H"(~*P) H 

u = l  

One can now repeat the same procedure for each factor, 

e.., } 
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in (7.3). This iteration finally yields the expression 

:=exp {-- fvex(Sp) 

I] 
k 

nonlinked 

~p(V) (7.6) 

Identity (7.6) yields an alternative formal expression for the partition 
function ,z~, defined in (7.1). If either one of these two expansions converges 
uniformly, then so does the other. In (7.6), however, the contours are only 
required to be nonlinked, rather than compatible in the sense used in (7.1). 
Hence, at least from a combinatorial point of view, (7.6) is simpler to deal 
with. Moreover, the factor ~,p(V) is of the form (6.1) and hence is amenable 
to the cluster-expansion techniques of Section 6. 

However, one is confronted with the following problem: Whereas the 
original weights w(~ p) satisfied the quantum Peierls condition (3.42), there 
is no a priori bound on the new weights W(~ t') defined in (7.4). Hence, in 
order to prove the convergence of the expansions in (7.1) and (7.6), we 
have to devise a method to control the new weights. This is done in the 
following section. The same considerations apply to ~'^ 

7.2. Cr i ter ion  for  the  S tab i l i ty  of Phases 

A sufficient condition for the stability of the Sp phase is the absolute 
convergence of the expansions for log Np(V) [with Zp(V) as in (7.6)] and 
of the analogous expansions for log ~2 .  From the discussions in Sections 
3 and 6 and the similarity of the expansion (7.6) of ~p(V) to that of 3p(V) 
in (6.1), we conclude that it suffices to check that the new weights W(~ p) 
satisfy a quantum Peierls condition (3.42), provided J is large enough and 
2 is small enough. Definition (7.4) of these weights implies in turn that a 
sufficient condition for the Peierls condition to be valid is that there exist 
some constant z such that 

Z,,(Int,,(~P)) 
Sp(int,,((p) ) ~<exp[z l0 Int,,((P)l] (7.7) 

for all u and all contours ~P. Hence, by choosing a sufficiently large J and 
a small 2, we may attempt to ensure that the new weights W(~ p) are 
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exponentially damped. The constant z will be fixed once and for all. 
Inspired by ref. 4, we choose z = 4~, where 

oc= 1 + a  a max [e(s,)l (7.8) 
1 <~u<~P 

(If the configurations s,, all have period 1, i.e., are constant, 0c = 1 suffices.) 
In the expansion of ~-A we also have to consider the special surface (~., U p  

which is a quantum contour associated with A (defined in Section 3.6). To 
cover all cases, we prove a bound of the form 

3 , ( V )  
Sp(V) ~< exp(4~ [a V[) (7.9) 

if sp is stable, for all regions Vc Za• [0, fl]. We interpret (7.9) as the con- 
dition for the stability of a space-time region V. In particular, the bound 
(7.7) is used to define stable contours. Following ref. 37, we require the 
following definition. 

D e f i n i t i o n  7.1.  (i) A region VcZax  [0, fl] is p-stable if 
3p(V) ~ 0 and (7.9) is satisfied for all u. 

(ii) A p-contour (P is stable if each Int,,(~ p) is p-stable for 1 ~< u ~< P. 

It is evident that the weights W(~) of stable contours satisfy the 
quantum Peierls condition. Hence, if we restrict the sums in (7.6) to 
stable p-contours, then we can apply the cluster expansion technology of 
Section 3. This observation motivates us to define truncated contour parti- 
tion functions, as in ref. 37: 

e,,Sp,} 
{;f} = p a" 

stable 
nonlinked 

f-f } :=exp  ze,.(Sp) ~'p(V) (7.10) 

The cluster expansion for the truncated partition function z-, up(V) converges 
absolutely. In particular, by Theorem 6.1 we have that, for fl large and 2 
small, the truncated contour fi'ee energies 

1 
fp  := lim - -  log =' v~. z'l• IV] up(V)  (7.11) 
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exist, and are of the form 

f'p = e(Sp) + f'p (7.12) 

where e(Sp) is the specific energy (2.56), and the remainder f~  is given by 
the cluster expansion (6.14) with w replaced by the new weights IV. Note 
that 

f p  = O ( e o )  (7.13) 

by (6.4), where eo is the constant appearing in Theorem 6.1, and thus 

= '  b I II vI f~ +log up( V)I <~ -fve.,.(sp) +e(Sp) I~ + 0(~o) IOVl 

~0c IOV1 (7.14) 

This bound is precisely the reason for our choice of e. We also observe that 

fv e'(sp)- f'p [VI ~<1-Iv  eX(sp) + e(sp) IV]l+ If~l" I~q 

~0elVI (7.15) 

We see that if, for a given boundary condition sp, all contours are 
stable, then fp = f'p. More generally, if all regions V are p-stable, we have 
that (~A~,_ ~-A and the primed quantum expectations equal the unprimed U p ,  - - U p  

ones. (The prime indicates that the summation is over stable contours 
only.) The key observation of Pirogov-Sinai theory, in the formulation due 
to Zahradnik, (37~ is that all regions V are p-stable if and only if the trun- 
cated free energy corresponding to the boundary condition sp is minimal. 
Let 

ap "= Re f~, - rain Re f ' ,  (7.16) 
S u E 

Then the stability criterion can be stated as follows: 

Theorem 7.2. If ap = O, the s.  phase is stable. Moreover, there is a 
P 

region of C 2 of the form max(lexp(-f lJ ) [ ,  121)< e o where the free-energy 
density and all the quantum expectations are analytic functions of e -p 
and 2. 
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The key lemma needed in the proof of this theorem is the following: 

L e m m a  7.3. The following statements are equivalent: 

(i) ap=0.  

(ii) All regions V are p-stable. 

Proof. We first prove that ( i i )~ ( i ) ,  assuming that ( i ) ~ ( i i )  holds. 
For this purpose, we consider a boundary condition so for which a,, = 0. 
For each V, we have that •p(V)=_p(V), by assumption, and 
3,,(V) = 3',,(V) holds because (i) ~ (ii). Therefore 

3,,(V) = ex p [ae  IV[ +Y [OV]] (7.17) exp[4ocO(lOVI)] >1 3p(V) 

where y is a constant of order Co. The leftmost inequality expresses 
p-stability of the region V, while the equality on the right is a consequence 
of (7.14). If ap>0 ,  the equation in (7.17) leads to a contradiction for 
regions V with diverging volume-to-surface-area ratio. Thus we conclude 
tha t  ap = O. 

Proof of (iJ ~ (iiJ. In order to understand the steps and definitions 
that follow, it is useful to inspect the ratio of partition functions corre- 
sponding to different boundary conditions. From (7.14) we have that, for 
any s,,, Sqe• ,  

3"( 
V)[ = e x p [  - ( a  t, - -aq)  IV] -[- 6~ IOV[] (7.18) 

~ .~ tq (V)  

where d~ is bounded by the constant Co. From (7.18) we conclude that if 
aq = 0, then 

S~(V----) ~< exp( [0 VI) (7.19) 

for large fl and small 2. Hence, in this case, the proof would be complete 
if the truncated partition functions in (7.19) could be replaced by the 
untruncated ones and 

3,,(V) ~<exp(const 10vI) (7.20) 

More generally, for regions V for which 

aq IV] <~ [OV[ (7.21) 
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we have from (7.18) that, for large fl and small 2, 

3-(v) 
.E'q(V) ~<exp(2 IOVI) (7.22) 

As a first step, we would like to show that the primes in (7.19) and (7.22) 
can be removed for regions satisfying (7.21). If condition (7.21) were 
inherited by subregions of V, then we could prove inductively, from (7.22), 
that ~p(V) z-, = ~p(V). However, it is not true that the bound (7.21) remains 
valid for arbitrary subregions of V. Therefore it is convenient to resort to 
a sufficient condition that has this hereditary feature. For this purpose, we 
introduce the notion of small regions and small contours, adopting the 
definitions of ref. 4. For a piecewise-cylindrical region V of spatial sections 
V t ..... V,,, we define the spatial diameter of V as follows: 

spdiam V= max diam Vi (7.23) 
i 

D e f i n i t i o n  7.4. (i) A region Vis q-small if 

aq spdiam I~< 1 (7.24) 

(ii) A contour ff is q-small if 

aq spdiam ~ ~< 1 (7.25) 

Otherwise the contour is called q-large [where I~" is as defined in (5.3)]. 

It is clear that smallness is inherited by subregions. Moreover, the 
bound (7.21) is valid for q-small regions, because 

aq IV] <~ a,l spdiam V IOV] 

~< Iov] (7.26) 

In particular, all contours inside a q-small region are q-small contours. [ It 
is for the sake of this property that we used 17 in (7.24)]. The hypothesis 
t h a t  ap = 0 implies that all regions are p-small. As a consequence, the proof 
of the implication ( i )~ ( i i )  is completed by proving the following 
lemma(37): 

I.emma 7.5. For all q, q-small regions are q-stable. As a conse- 
quence, all q-contours contained in q-small regions are stable. 

We prove this lemma by induction in the spatial diameters of the 
regions. 
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Let us assume that, for all u, a,, spdiam V~< I implies that S,,(~') q:O 
and 

So( V) ~<exp(4oc IOVI) (7.27) 
s,,(v) 

for all v and for all regions ~', contained in V, with spatial diameter less 
than or equal to m. We pick some Sq e :)ff and some q-small region ff of 
spatial diameter m +  1, and prove the bound (7.27), with u=q .  All con- 
tours ~q in this region are q-small, hence their interiors are q-small and of 
spatial diameter strictly smaller than m + 1. By the inductive hypothesis 
such interiors satisfy (7.27), and hence these contours are stable, yielding 

S'q(V) = ~q(V) (7.28) 

We remark that if aL, = 0, then the proof is complete. This is because if 
a o = O, all regions are v-small, and consequently all v-contours in l ~ are 
stable. This implies that 3[,( V ) = Y . d  V), which, along with (7.28) and 
(7.22), implies that (7.9) is true. 

Let us now consider a boundary condition s,, for which a, ,#0.  To 
estimate 3,,( V)/3q( V) we resort to maneuvres that are justified, a 
posteriori, by the proof of uniform convergence. We start with expression 
(7.2) for the partition function of an ensemble of mutually exterior con- 
tours with exterior configuration s~, in a space-time volume 1 ~ and resum 
the contribution of v-small exterior contours. This yields 

Z,,(V) ~ 3~,ma"(Ext) 
,--,~q(V) -~- {C[-I ~ 19 ~.a~q(V) 1-Ik w ( ~ )  

lqarge 
exterior 

x exp { - fsupp~c~, e.,.( S o ) } ,~(Int(('~.)) (7.29) 

Here "Ext" is the region outside the v-large exterior contours {r the 
label "small" indicates a restriction to configurations where all the exterior 
contours are v-small, and 

S(Int(r := H ~(Int~((')) 

If we multiply and divide the RHS of (7.29) by 

Eq(Int) := 1--[ l--I Sq(Inb(4~)) (7.30) 
k 
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we obtain 

with 

E~(V) 

/c~} = P 
t M a r g e  

e x t e r i o r  

Epall(Ext ) Nq(Int) exp{ - -Zk  is.pp~O" ex(G)} 

 q(v) 

• H nc ) 
k 

Y(~'~.) := w((~.) ~ ~'~(Int~(~k)) 

We observe that, by the inductive hypothesis, 

~ ,  . . . .  "tExt) = s~mall(Ext) 
v x 

(7.31) 

(7.32) 

(7.33) 

Identities (7.28) and (7.33) allow us to apply the finite-volume bound 
(7.14) to all the factors in (7.31), except I-Ik Y((~-)- We then obtain 

-~?mall(Ext), Zq(Int) exp{ - -Ek is.pp C~ ex(sL,)} ] 

~q(V) 

~<exp[ --Re(f ,7 ma" --f'q) [ V\Int] +2~  10V13 1-[ exp [ (2d+  1) o~ IGI3 
k 

(7.34) 

We have used (7.15) and the geometrical bound I 0 Extl + 10 Intl ~< IOgl + 
2dY~k [(;1. We now use the q-smallness, inequality (7.26), of V to bound 

. . . .  II . . . .  II ..~_ aq) I V\Intl - Re(f~ - fq)  [ V\Int[ = ( - a  L, 

s m a l l  ~< - G, [ V\Int[ + [0 V[ (7.35) 

Furthermore, the quantum Peierls condition (3.42) and the inductive 
hypothesis (7.27) for u = q [combined with the bound la Int(()~)] ~< 2d IGI3 
imply that 

[ Y((~)I <-N 21s(OI e - J  Ir Ir (7.36) 
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Substituting (7.34)-(7.36) in (7.31), we get the bound 

~,,(V) ~<e3~,l,~Z I ~j] e_a~ma, lv\intl H21a~C~)le_Jlr177 lOd+l)c,K~ I 
, -~q(V) 

led = r k 
o-large 

exterior 

t small I V\Int] :=e  3~ leVI e - "  I-I w*(ff~) (7.37) 

v-large 
exterior 

To show that e 4~ Iovl is an upper bound for (7.37), and hence complete 
the proof of the lemma, it is convenient to follow ref. 37 and consider the 
quantity 

~,arger V) := t I-[ W*(~k) e2aECkl (7.38) o 
{~k} = p k 

nonlinked 

where the label "large" indicates restriction to configurations where all the 
exterior contours are v-large. This quantity can be interpreted as the parti- 
tion function of an ensemble of contours having weights 

I~(~) := W*(~) e 2a KI (7.39) 

and confined to a space-time volume 17". It is evident that, for eo small 
enough, the contour weights ~,~(() satisfy the quantum Peierls condition, 
and hence the cluster expansion converges. Moreover, i ff l :  'rge is the corre- 
sponding free energy density [defined as in (6.2)], then it follows from 
Theorem 4.1 that 

[ ~,large( V)] -1 ~< exptjTt.rg~ I VI) exp[ O(eo) I0~ ] ~ v  

We claim that 

(7.40) 

small __ ~large G, /> J,, (7.41) 

Indeed, by (7.12) and Theorem 6.1, 

a t  ' . . . .  I1 = a, + O ( C  large) (7.42) 

[see discussion after (6.49)]. Moreover, for every v-large contour 

aL,(lmi, +J l  + ""  +J,,) 1> aL, spdiam 

> 1 (7.43) 



Low-Temperature Phase Diagrams of Quantum Lattice Systems 527 

where the first inequality follows from (the important) property (3.36), and 
the second one is just the definition of largeness. Therefore, by the final 
comment in Section 6.4, 

C large = 0((130) l/av) (7.44) 

By the same argument, 

?large  ~- O ( ( ~ 0 )  l/al,) ( 7 . 4 5 )  

Hence 

sma l l+  ?large ~ at,..{_ O((go)l/a,,) 
('/t, - - J  t, (7.46) 

which is nonnegative for fl large and 2 small, proving (7.41). 
For future purposes, we summarize the rest of the argument in the 

following lemma, which shows that (7.41) causes the sum-integral in (7.37) 
to yield at most a contribution exponential in the boundary. By substi- 
tuting the bound (7.47), shown below, into the RHS of (7.37), we obtain 
the bound (7.27). This completes the inductive proof. | 

I .emma 7.6. Consider weights w*(() satisfying a Peierls bound (3.42), 
and let f denote the contour free energy for the weights ~ ( ( )=  w*(()e 2d I~l 

(well defined if e 0 is small enough). Then, for g~> - ~  

{(kl = V 
exterior 

exp(--g I V\Int[) 1-[ W*((k) ~ exp[O(eo) 10VII 
k 

(7.47) 

Proof .  (This is Lemma 3.2 of ref. 4. The proof given there applies 
verbatim; we transcribe it for the sake of completeness.) Multiply and 
divide the LHS of (7.47) by ~ffge(Int). Using the analog of (7.40) for the 
region Int := U~.k Int~((k) and the bound lO Intl ~< 2 d Z k  I(k l, we obtain 

) (7.48) 

for e0 small enough. Thus the LHS of (7.47) satisfies 

LHS ~< ~ e-g II"\lntle?lI"tl31arg~(Int) I-[ W((k) (7.49) 

exterior 
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and, since - g ~ < f ,  we have that 

L H S ~  < e?l vl ~ ~ I~rge(Int) I'-[ ~'(~k) 

e x t e r i o r  

~< e71 vI ,~large(V) 

Hence, by the analog of (7.48) for the region V, 

(7.50) 

LHS <~ e~ I (7.51) 

7.3. Stability of Phase Diagrams 

Finally we are in a condition to prove Theorem 2.3. The proof of this 
theorem involves two steps: 

Step 1. Prove that the exponential damping of the original weights w 
and their derivatives implies an analogous damping of the new weights W 
(for small contours) and of their derivatives. 

Step 2. Prove that these differentiability properties of the weights W 
imply that at low temperature and small 2, the contour free energies fp  are 
so close to the energy densities e(Sp) that the manifolds defined by 

t t t 
Re f~,t . . . . .  Re fPk < Re fPk+, ..... Re fp,, (7.52) 

[-i.e., c ~ l p , ~  defined in (7.52)] are close to those defined in terms of the 

energies e(Sp) [i.e., ~1~ '  o~ ], and have differentiability properties similar {Spl . . . . . .  ~'pk} 
to those of the weights W. 

The proof of step 2, given step 1, is, in pr#1ciple, an exercise in implicit- 
function theorem technology. However, it is somewhat subtle in cases, as 
the one we are interested in here, where the weights may fail to be positive 
or (even) real. As pointed out in ref. 4, there may appear zeros of the parti- 
tion functions that destroy the continuity of the excess free energies a~,. 

In the sequel we shall only prove step 1; the proof of step 2 is a 
straightforward adaptation of the argument given in ref. 4, Section 6 
(replacing "diam" by "spdiam"). 

Theorem 7 .7 .  Assume that there is a nonempty open set (P c R P- 
such that, for I te  (_9, the quantities %,.(s~) and w e are continuously differen- 
tiable functions of p and, moreover, 

0w,,(() iwe(~)[, ~ ~ )lS~Clle-Slffl• (7.53) 
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for all contours ~, and 

Oe~_,.,.(s~,) 
lee.,.(s,,)l ~<ct-- 1; 0 ~  ~< 1 (7.54) 

for all sv e ~,r, 1 ~< i ~< P - 1 ,  for some ct < m. Then there exists a constant 
J >  0 such that if e0 = max(exp(-f lY),  2) is sufficiently small, we have that, 
for all ~ ~ (~ and all q-small contours (q, 

0 W,,((q) ~< ~lBtml e - J  Ir I w'-'((~)l' Ogti (7.55) 

with ,~=2e 15a= and ] = J - 1 5 d ~ .  

Remark. Conditions (7.53) and (7.54) express the uniform bounded- 
ness requirement of hypothesis (H1.2). We can always rescale J, 2, and the 
parameters/L; such that there are no further constants in these bounds. 

Proof. Pick a small q-contour (q. The bound on W((q) is immediate 
because of the stability of small q-contours (Lemma 7.5). For  the 
derivatives we would like to use the Leibnitz formula, 

OW(~q)_ Ow((q) ~ S~'(Int"(~q)) 

a~li O/t, ~,=~3q(Int,,((q)) 

v + w((q) ,,:%q Olli \Zq(Int, ,((q))/  
~( lnt~((q))  (7.56) 

~:~,2q(Inte((q)) 

and find suitable bounds for each term. This approach requires two 
arguments: First, one must show that each of the factors is differentiable 
and, second, one must exhibit bounds on the derivatives. 

The stability of q-small contours--already proven above--implies the 
correct bounds for all factors IS,,(Int,,((q) )/Y,q( Int,,( (q))[, and the hypotheses 
take care of the differentiability of w(~ q) and of the bounds on these quan- 
tities and o n  [Ow(~q)/(O[li[. What remains is to prove the differentiability of 
the ratios 

S~(Int~((u)) 

~,q(Int,,((q)) (7.57) 

and to find a bound on their derivatives. It is easy to treat Sq, because it 
only contains q-small, and hence stable, contours, and we can apply the 
results of Section 6.6. For the numerators, however, we need to take into 
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account v-large, and hence possibly unstable, contours. It is imperative at 
this point to work with the quotient 3,./Sq. In fact, proceeding very much 
as in the proof of Lemma 7.5, one shows the following: 

Claim. If V is q-small, then, for any v, the quotient S<,( V)/3q(V) is 
differentiable, and 

~< [vI (7.58) \Zq( V)}[ 

It is clear that this claim implies the proposed inequality (7.55). 
Indeed, inserting the hypotheses (7.53)-(7.54), the stability condition 
(7.27), and the claimed inequality (7.58)--for V= Int~,((q)--into (7.56), we 
obtain 

OW(;~q)]l 21"r162162 + 5  
OILi <~ Ilnt(Cq)l-I 

<~ 21B(('q)l e -- J I~qla. e8,a [Intit~'t)l e7d Iraqi 

~< ~ IBI~7't)l e - - J  I~q[• el5d~. Ifql (7.59) 

where we have used the bounds 

10 Int((q)[ ~< 2d I~"1; IInt((q)l ~< 10 Int((q)l 2 

and 1 +5x2<~exp[7x/2]. As 1([ ~< IB(C)I + ICI• this last bound implies 
(7.55). 

To prove the claim, we proceed, once again, by induction in the spa- 
tial diameter of V. We assume that (7.58) is true for all u and for all u-small 
regions P with spatial diameter m or less. We shall now prove (7.58) for 
some q and some q-small region V of diameter m + 1. We start with the 
resummed expression (7.3 I), which we repeat for the reader's convenience: 

~,(V) = ~ -~,~'sma'i(Ext) 3q(Int) exp{ --Ek ls.pp(r ex(S,,)} 
, - ~ q ( V )  {ff~-} ~ 1 ~ ,-~,~q(V) 

L~large 
exterior 

x I-[ Y(ff~) (7.60) 
k 

We shall use the product rule to calculate the/~i-derivative of the RHS. For 
the partition functions on the RHS we can use the cluster-expansion 
technology, because only stable contours are involved (Lemma 7.5 for 
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Z sm"ll and the inductive hypothesis for ~q). Thus, we conclude differen- 
tiability and a bound analogous to (6.60): 

0 ~ small . .  ] 

-t- 2-~--~i[--exp{fExtex(Sv)}l ~sma''.~ v t~xI] . . . .  

fE Oe,.(s,,) 
~< 13,~,mall(Ext)l [Extl + x, [ 0 - -~- i  [ IS'~'mall(Ext)l 

~< 212~mal'(Ext)l IExtl (7.61) 

The first inequality makes use of (7.6), the second one is due to hypothesis 
(7.54), and the third one follows from (6.60). Similarly, 

O ('Sq(Int)'~ Sq(Int) 
\ ~ j  <~2 ~q(V) ]V\Int[ (7.62) 

Moreover, from the differentiability of the energy densities and the bound 
(7.54), 

O-~-exp{--~fsupp, c,~.leX(s") i 

~<~ Ir exp{-~fsupp,r (7.63) 

Finally, for the weights 

,, _ ~ .,, f l  Z,,(Int,,(ff~)) (7.64) Y(~k)--t(~'k) ,,= 1 ~q(Int,(~;)~ 

we use the hypotheses made on the original weights w and the inductive 
hypothesis. They imply that each factor is differentiable, and we can use the 
bound 

OY(~) c3w(~'s r-I ~,(Int,,(~.)) 
~< ~ ,,=, ~q(Int , (~))  

0 (2,,(Int,,(~7,))" ~ 
+ w(~.) ,,=, ~ \2q(Int, ,(~;))/[  (7.65) 
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Using the q-stability of the interior regions and the inductive bound we 
obtain the upper bound 

OY((~) <~)lSr I +5 lint (~l e4~ le,,tr 

~< ~lS@l e - J  tr =: W*(~) (7.66) 

['To obtain the last line we proceeded as in (7.59).] With the bounds 
(7.61)-(7.66) and the already known bounds (7.34)-(7.35), expression 
(7.60) yields 

OltiO ~q(~"(V) ~< e2=lav I I,:~.1 ~J]~ ~ exp[-Re(f~sma't-fq) lV\Int[] 
t,-larg.e 

ex te r io r  

W*((~) e'2a+"= Ir [ 2(IExtl + I V\Int l )+ ~ (1~. [ +1 )] I7 X 

k 1. k J 

(7.67) 

The square bracket is bounded by 

4 [ V\Int[ + y' 1 ~ 5 [ VI 
k 

and the remaining sum is bounded by e =~ by Lemma 7.6. 

(7.68) 
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